Skewness Based Elman Recurrent Neural Network Model for Classification of Cavitation Signals from Pressure Drop Devices of Prototype Fast Breeder Reactor
Skewness Based Elman Recurrent Neural Network Model for Classification of Cavitation Signals from Pressure Drop Devices of Prototype Fast Breeder Reactor
出处
《通讯和计算机(中英文版)》
2011年第7期517-522,共6页
Journal of Communication and Computer
参考文献8
-
1Description. Prototype Fast Breeder Reactor -Preliminary Safety Analysis report, Chapter 5.2 Core Engineering, available onlinw at: www.igcar.ernet.in/igc.2004 / reg / neg / smspdfs, February 2004.
-
2P.K. Gupta, P.A. Kumar, A. Kaul, G.K. Pandey, G. Padmakumar, V. Prakash, C. Anandbabu, Neural network based methodology for cavitation detection in pressure dropping devices of PFBR, in: Proc. of National Seminar on Non Destructive Evaluation, 2006, Hyderabad..
-
3R. Ramadevi, B.S. Rani, N. Manoharan, V. Prakash, P. Kalyasundaram, B. Raj, Classification of pressure drop devices of prototype fast breeder reactor through seven layered feedforward neural network, Soft Computing inIndustrial Applications 75 (2010) 157-164.
-
4R. Rajesh, S. Chattopadhyay, M. Kundu, Prediction of equilibrium solubility of Co2in aqueous alkanolamines through artificial neural network, Chemeca'06, 2006.
-
5R. Ramadevi, R.B. Sheela, V. Prakash, P. Kalyasundaram, B. Raj, in: Proc. of International Conference on "Yrends In Industrial Measurements And Automation - TIMA 2011" 2011, pp. 585-588.
-
6N.F. Shilbayeh, M.Z. Iskandarani, Effect of hidden layer neurons on the classification of optical character recognition typed arabic numerals, Journal of Computer Science 4 (2008) 578-584.
-
7K. Kumarci, M. Abdollahian, F. Kumarc, P.K Dehkordy, Calculation of natural frequency of arch shape using neural network, CSCE 2008 Annual Conference, 2008.
-
8R. Ramadevi, R.B. Sheela, V. Prakash, P. Kalyasundaram, D.B. Raj, Skewness based artificial neural network model for zonewise classification of cavitation signals from pressure drop devices of prototype fast breeder reactor, International Journal of Computer Communication and Information Systems, Gopalax Publications, Singapore, 2010, pp. 185-188.
-
1Zhang Yongjun(Institute of Command and Technology, COSTIND, Beijing 101407)Chen Zongzhi (Institute of Electronics, Academia Sinica, Beijing 100080).ANALYSIS AND IMPROVEMENT OF RECURRENT CORRELATION NEURAL NETWORKS[J].Journal of Electronics(China),1997,14(3):215-219.
-
2孙俊华,张志军.调节阀空化损坏分析及解决方案[J].炼油与化工,2007,18(4):51-52. 被引量:2
-
3皮宇,肖娜娜.回路的最终环节对过程控制的影响[J].炼油技术与工程,2005,35(4):48-52. 被引量:1
-
4王直杰,路林吉,邵世煌.Designing Neural Network Model in Distributed Control System[J].Journal of China Textile University(English Edition),1998,15(3):81-84.
-
5Yiqing YU.A New Searching Strategy for the Lost Plane Based on RBF Neural Network Model and Global Optimization Model[J].International Journal of Technology Management,2015(4):126-128.
-
6马儒宁,陈天平.RECURRENT NEURAL NETWORK MODEL BASED ON PROJECTIVE OPERATOR AND ITS APPLICATION TO OPTIMIZATION PROBLEMS[J].Applied Mathematics and Mechanics(English Edition),2006,27(4):543-554.
-
7LIU ZhiYong QIAO Hong.Investigation on the skewness for independent component analysis[J].Science China(Information Sciences),2011,54(4):849-860.
-
8Masutake SOTSU.Unplanned Shutdown Frequency Prediction of FBR MONJU Using Fault Tree Analysis Method[J].Journal of Energy and Power Engineering,2014,8(7):1286-1292.
-
9张森,张化光.基于动态递归网的智能PID自适应控制算法[J].沈阳电力高等专科学校学报,2000,2(1):19-21. 被引量:1
-
10其它计算机理论与技术[J].电子科技文摘,2003,0(5):97-97.