期刊文献+

Skewness Based Elman Recurrent Neural Network Model for Classification of Cavitation Signals from Pressure Drop Devices of Prototype Fast Breeder Reactor

Skewness Based Elman Recurrent Neural Network Model for Classification of Cavitation Signals from Pressure Drop Devices of Prototype Fast Breeder Reactor
下载PDF
导出
出处 《通讯和计算机(中英文版)》 2011年第7期517-522,共6页 Journal of Communication and Computer
关键词 神经网络模型 回归神经网络 信号分类 快中子增殖反应堆 偏度 空化 压力降 ELMAN网络 Skewness, elman recurrent network, resilient back propagation algorithm
  • 相关文献

参考文献8

  • 1Description. Prototype Fast Breeder Reactor -Preliminary Safety Analysis report, Chapter 5.2 Core Engineering, available onlinw at: www.igcar.ernet.in/igc.2004 / reg / neg / smspdfs, February 2004.
  • 2P.K. Gupta, P.A. Kumar, A. Kaul, G.K. Pandey, G. Padmakumar, V. Prakash, C. Anandbabu, Neural network based methodology for cavitation detection in pressure dropping devices of PFBR, in: Proc. of National Seminar on Non Destructive Evaluation, 2006, Hyderabad..
  • 3R. Ramadevi, B.S. Rani, N. Manoharan, V. Prakash, P. Kalyasundaram, B. Raj, Classification of pressure drop devices of prototype fast breeder reactor through seven layered feedforward neural network, Soft Computing inIndustrial Applications 75 (2010) 157-164.
  • 4R. Rajesh, S. Chattopadhyay, M. Kundu, Prediction of equilibrium solubility of Co2in aqueous alkanolamines through artificial neural network, Chemeca'06, 2006.
  • 5R. Ramadevi, R.B. Sheela, V. Prakash, P. Kalyasundaram, B. Raj, in: Proc. of International Conference on "Yrends In Industrial Measurements And Automation - TIMA 2011" 2011, pp. 585-588.
  • 6N.F. Shilbayeh, M.Z. Iskandarani, Effect of hidden layer neurons on the classification of optical character recognition typed arabic numerals, Journal of Computer Science 4 (2008) 578-584.
  • 7K. Kumarci, M. Abdollahian, F. Kumarc, P.K Dehkordy, Calculation of natural frequency of arch shape using neural network, CSCE 2008 Annual Conference, 2008.
  • 8R. Ramadevi, R.B. Sheela, V. Prakash, P. Kalyasundaram, D.B. Raj, Skewness based artificial neural network model for zonewise classification of cavitation signals from pressure drop devices of prototype fast breeder reactor, International Journal of Computer Communication and Information Systems, Gopalax Publications, Singapore, 2010, pp. 185-188.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部