摘要
本文讨论了Verhulst型偏微分方程人口模型pt(t,x) + px (t,x) = - d1(x) + K∫A0 p(t,ξ)dξp(t,x) (1)在一定非局部初边值条件下的解,运用逐次逼近法得到了方程(1)迭代解的表达式,并证明了它的整体存在唯一性。
The solutions of Verhulst’s partial differential equations an the human population mathematical model,Pt(t,x)+Px(t,x)=-d 1(x)+K∫ A 0P(t,ξ)dξp(t,x)under the particular non-local initial and border conditions, are discussed. The formula of iterative solutions for this equation are obtained by the successive approximation method. The theorem on the global existence and uniqueness of solutions for this equation are also theoritically proved.
出处
《云南师范大学学报(自然科学版)》
1999年第6期28-39,共12页
Journal of Yunnan Normal University:Natural Sciences Edition
关键词
偏微分方程
人口模型
整体解
存在唯一性
compatibility
characteristic line
successive approximation method
uniform convergence
existence and uniqueness