摘要
针对最小二乘在箭载GPS实时弹道参数解算中随机误差较大的不足,将卡尔曼最优估计理论应用于高动态的运载火箭GPS实时定位,设计了一种基于卡尔曼最优估计理论的定位算法,以提高弹道精度和实时定位性能;对算法进行试验,结果表明:与最小二乘法相比,本算法能得到更好的滤波效果,可以有效抑制和减小弹道的随机误差,定位精度有了明显提高,实时性和可靠性进一步增强。为提高火箭GPS数据处理精度提供了一种新的技术途径。
To reduce the comparative random error by LS(Least-squares algorithm), a Kalman filtering algorithm is designed in this paper for the real-time kinematic on-board GPS positioning, which can improve effectively the precision and real-tlme performance of the trajectory. Furthermore, the simulation of the LS and our algorithm are given in this paper. From the analysis and comparison, it can be concluded that our algorithm has better performance than the LS and is feasible for the on-board GPS data procession, with regard of the suppression of the random error and the low complexity.
出处
《全球定位系统》
2011年第3期9-13,32,共6页
Gnss World of China