期刊文献+

Electrochemical performance of LiFePO_4/(C+Fe_2P) composite cathode material synthesized by sol-gel method 被引量:2

Electrochemical performance of LiFePO_4/(C+Fe_2P) composite cathode material synthesized by sol-gel method
下载PDF
导出
摘要 A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePOa/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+FeeP) composite is prepared at 650 ~C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+FeRP) at 0.1C is 156 and 161 mA.h/g at 25 and 55 ℃, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA.h/g at 25 and 55 ℃, respectively, and the capacity still remains 135 and 142 mA-h/g after 30 cycles at 25 and 55℃, respectively. A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3·9H2O,LiAc·H2O,NH4H2PO4 and citric acid as raw materials,and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and electrochemical tests.The Fe2P content,morphology and electrochemical performance of LiFePO4/(C+Fe2P) composite depend on the calcination temperature.The optimized LiFePO4/(C+Fe2P) composite is prepared at 650 °C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2%(mass fraction).The discharge capacity of the optimized LiFePO4/(C+Fe2P) at 0.1C is 156 and 161 mA·h/g at 25 and 55 °C,respectively,and the corresponding capacity retentions are 96% after 30 cycles;while the capacity at 1C is 142 and 149 mA·h/g at 25 and 55 °C,respectively,and the capacity still remains 135 and 142 mA·h/g after 30 cycles at 25 and 55 °C,respectively.
出处 《Journal of Central South University》 SCIE EI CAS 2011年第4期978-984,共7页 中南大学学报(英文版)
基金 Project(50571091) supported by the National Natural Science Foundation of China Project(09C947) supported by the Scientific Research Fund of Hunan Provincial Education Department,China
关键词 LiFePO4/(C+Fe2P) composite sol-gel sphere-like morphology electrochemical performance 复合阴极材料 电化学性能 LiFePO4 凝胶法 溶胶 Fe(NO3)3 扫描电子显微镜 透射电子显微镜
  • 相关文献

参考文献19

  • 1PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
  • 2BELHAROUAK I, JOHNSON C, AMINE K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated giFePO4 [J]. Electrochemistry Communications, 2005, 7(10): 983-988.
  • 3ZHANG Bao, LI Xin-hai, LUO Wen-bin, WANG Zhi-xing. Electrochemical properties of LiFe~Mg~PO~ for cathode materials of lithium ion batteries [J]. Joumal of Central South University: Science and Technology, 2006, 37(6): 1 094-1097 (in Chinese).
  • 4GABERSCEK M, DOMINKO R, JAMNIK J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes [J]. Electrochemistry Communications, 2007, 9(12): 2278-2283.
  • 5MI C H, CAO Y X, ZHANG X G, ZHAO X B, LI H L. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technology, 2008, 181(3): 301-306.
  • 6CHANG Zhao-Rong, LU Hao-Jie, TANG Hong-Wei, LI Hua-Ji, YUAN Xiao-Zi, WANG Hai-jiang. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries [J]. Electrochimica Acta, 2009, 54(20): 4595-4590.
  • 7DING Y, JIANG Y, XU E YIN J, REN H, ZHUO Q, LONG Z, ZHANG P. Preparation of nano-structured LiFePOa/graphene composites by co-precipitation method [J]. Electrochemistry Communications, 2010, 12(1): 10-13.
  • 8HUANG H, YIN S C, KERR T, TAYLOR N, NAZAR L F. Nanostructured composites: A high capacity, fast rate Li3V2(PO4)Jcarbon cathode for rechargeable lithium batteries [J]. Advanced Materials, 2002, 14(21): 1525-1528.
  • 9YIN S C, GRONDEY H, STROBEL P, ANNE M, NAZAR L F. Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)3 [J]. Journal of the American Chemical Society, 2003, 125(34): 10402 10411.
  • 10CHEN Quan-qi, WANG Jian-ming, TANG Zhen, HE Wei-chun, SHAO Hai-bo, ZHANG Jian-qing. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method [J]. Electrochirnica Acta, 2007, 52(16): 5251-5257.

同被引文献22

  • 1吴爱德,张向军,卢世刚,阚素荣.Li_2CO_3,FePO_4和葡萄糖合成LiFePO_4的机制研究[J].稀有金属,2010,34(6):880-886. 被引量:6
  • 2刘素琴,龚本利,黄可龙,张戈,李世彩.焙烧温度对合成LiFePO_4的产物组成和电化学性能的影响[J].物理化学学报,2007,23(7):1117-1122. 被引量:6
  • 3张宝,彭春丽,王志兴,王云燕,李新海.加碳方式对磷酸铁锂动力学及电化学性能的影响[J].中南大学学报(自然科学版),2007,38(5):863-866. 被引量:13
  • 4XU Bo, QIAN Danna, WANG Ziying, et al. Recent progress in cathode materials research for advanced lithium ion batteries[J]. Materials Science and Engineering, 2012, 73(5/6): 51-65.
  • 5LI Huiqiao, ZHOU Haoshen. Enhancing the performances of Li-ion batteries by carbon-coating: present and future[J]. Chemical Communications, 2012, 48: 1201-1217.
  • 6Zhang S S, Allen J L, Xu K, et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes[J]. Journal of Power Sources, 2005, 147(1): 234-240.
  • 7Miran G, Robert D, Marjan B, et al. Porous, carbon-decorated LiFePO4 prepared by sol-gel method based on citric acid[J]. Solid State Ionics, 2005, 176(19): 1801-1805.
  • 8Tajimi S, lkeda Y, Uematsu K, et al. Enhanced electrochemicalperformance of LiFePO4 prepared by hydrothermal reaction[J]. Solid State Ionics, 2004, 175(1/2/3/4): 287-290.
  • 9Meligrana G, Gerbaldi C, Tuel A, et al. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells[J]. Journal of Power Sources, 2006, 160(1): 516-522.
  • 10Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J]. Journal of Power Sources, 2003, 119/120/121: 247-251.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部