期刊文献+

基于神经网络的自主水下机器人动态反馈控制 被引量:13

Dynamic feedback control based on ANN compensation controller for AUV motions
下载PDF
导出
摘要 针对自主水下机器人数学模型的强非线性及所受海流干扰无法确定等特点,设计了基于神经网络补偿器的动态反馈控制算法。通过对自主水下机器人系统数学模型研究,将系统分解为近似线性部分与非线性不确定部分。通过动态反馈控制实现对分解出的近似线性部分进行初步控制,利用神经网络所具有的自适应控制实现对不确定模型与干扰项进行补偿控制,提高自主水下机器人运动控制的鲁棒性。通过Lyapunov稳定判据证明了此控制算法的收敛性,通过Matlab数字仿真平台验证了此算法的抗干扰能力,在自主水下机器人半物理仿真平台上分别采用所提出的控制算法与PID控制算法对自主水下机器人系统定深运动进行了控制。研究结果表明所提出的算法具有更好的动态性能与强鲁棒性。 One algorithm of artificial neural network (ANN) compensator coupled with dynamical state feedback control was designed for motions of autonomous underwater vehicle (AUV). The math model of AUV was decomposed to one extended linear subsystem and an unknown nonlinear subsystem. The fore part was controlled by dynamic state feedback control algorithm which was improved on feedback parame- ters described by some functions of time, poses, and surge speed as well as the last one being controlled by ANN whose parameters are online adjustment. Theories are proved and developed by Lyapunov theory which denoted that the tracking error can be converged to zero. Some simulation results with Matlab plat- form show that the advised control algorithm holds the capability of anti-disturbance. Meanwhile, these semi-physical environment experiences make it clear that the advised control algorithm can have better dy- namic oerformanee than PID control algorithm.
出处 《电机与控制学报》 EI CSCD 北大核心 2011年第7期87-93,共7页 Electric Machines and Control
基金 中科院知识创新工程重要方向项目(YYYJ-0917) 国家973项目(6138102007-3 6138102008-4) 江西省教育厅科技项目(GJJ10171)
关键词 自主水下机器人 不确定模型 神经网络补偿器 动态反馈控制 半物理仿真 autonomous underwater vehicle unknown nonlinear subsystem artificial neural network dynamic state feedback control semi-physical simulation
  • 相关文献

参考文献17

  • 1ROBERTS G N. Trends in marine control systems[ J]. Annum Re- views in Control, 2008, 32 (2) : 263 - 269.
  • 2陈强,张林根.美国军用UUV现状及发展趋势分析[J].舰船科学技术,2010,32(7):129-134. 被引量:58
  • 3REN B B, GE S S, TEE K P, et al. Adaptive neural control for output feedback nonlinear systems using a barrier lyapunov func- tion[ J]. IEEE Transactions on Neural Networks, 2010, 21 (8): 1339 - 1345.
  • 4程如岐,赵庚申,郭天勇.Z源逆变器的状态反馈控制策略[J].电机与控制学报,2009,13(5):673-678. 被引量:18
  • 5SHAO Z H, SAWAN M E. Stabilization of uncertain singularly perturbed systems[ J ]. IEE Proceedings-Control Theory Applica- tion, 2006, 153 ( 1 ) : 99 - 103.
  • 6HUANG Dan, NGUANG Singkiong. Dynamic output feedback con- trol for uncertain networked control systems with random network- induced delays[ J]. International Journal of Control, Automation and Systems, 2009, 7(5) : 841 -847.
  • 7毕凤阳,魏英杰,张嘉钟,曹伟.A Cascade Approach for Global Trajectory Tracking Control of Underactuated AUVs[J].China Ocean Engineering,2010,24(2):369-380. 被引量:1
  • 8CHENG Xiangqin, YAN Zheping, BIAN Xinqian, et al. Applica- tion of linearization via state feedback to heading control for auton- omous underwater vehicle [ C ]//2008 IEEE International Confer- ence on Mechatronics and Automation, August 5 - 8,2008, Taka- matsu, Japan. 2008 : 476 -481.
  • 9PETRICH J, STILWELL D J. Model simplification for AUV pitch -axis control desigu[ J]. Ocean Engineering, 2010, 37(7) : 638 -651.
  • 10WANG J S, LEE C S G. Self-adaptive recurrent neuro-fuzzy con- trol of an autonomous underwater vehicle [ J]. IEEE Transactions on Robotics and Automation, 2003, 19(2) : 283 -295.

二级参考文献33

共引文献99

同被引文献125

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部