期刊文献+

基于粒子跟踪测速技术的液力偶合器内部流速测定方法 被引量:13

Internal flow velocimetry of hydraulic coupling based onparticle tracking velocimetry technology
下载PDF
导出
摘要 为了研究液力偶合器内部流场的特性,该文基于粒子跟踪测速(PTV,Particle Tracking Velocimetry)技术对矩形腔型液力偶合器进行了内部流场试验测试,利用单帧3次曝光技术记录示踪粒子不同长度3段运动轨迹,准确判断了偶合器内部流场速度方向。运用边缘检测算法提取粒子运动轨迹,引入双阈值法检测图像强边缘点和弱边缘点,利用该方法可以有效地检测出图像的单像素边缘,直观地提取粒子运动位移大小,进而获得了液力偶合器内部流场速度,实现了其内部流场可视化与定量测量。同时,可以近似估计示踪粒子的粒径大小。 In order to study the three-dimension flow characteristics of hydraulic coupling,the internal flow field of rectangular cavity-type hydraulic coupling was tested based on PTV(Particle Tracking Velocimetry) technology.Triple exposure technique on single frame was used to record three different lengths of particle motion trajectory.The internal flow direction of hydraulic coupling was judged accurately.Particle motion trajectory was extracted by edge detection algorithm,double threshold method was used to detect strong and weak edges.This method was proved efficient for detecting edges with sigle-pixel width and the displacements of particles were extracted directly,then the internal flow velocimetry was acquired,visualization of internal flow field and quantitative measurement were achieved.At the same time,the particle diameter can be estimated approximately.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2011年第7期140-145,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 "863"国家高技术研究发展计划项目"大型泵与风机液力调速节能关键技术研究"(2007AA05Z256)
关键词 边缘检测 粒径 可视化 液力偶合器 粒子跟踪测速 edge detection particle size visualization hydraulic coupling particle tracking velocimetry
  • 相关文献

参考文献13

  • 1Bai L, Fiebig M, Mitra N K. Numerical analysis of turbulent flow in fluid couplings[J]. ASME Journal of Fluids Engineering, 1997, 119(3): 569-576.
  • 2Huitenga H, Mitra N K. Improving start-up behavior of fluid couplings through modification of runner geometry: part I-fluid flow analysis and proposed improvement[J]. ASME Journal of Fluids Engineering, 2000, 122(4): 638-688.
  • 3Huitenga H, Mitra N K. Improving start-up behavior of fluid couplings through modification of runner geometry: part II-modification of runner geometry and its effects on the operation characteristics[J]. ASME Journal of Fluids Engineering, 2000, 122(4): 689-693.
  • 4褚亚旭,刘春宝,马文星.液力耦合器三维瞬态流场大涡模拟与特性预测[J].农业机械学报,2008,39(10):169-173. 被引量:9
  • 5Adrian R J. Particle Image Velocimetry:A Particle Guide, second Edition[M]. Springer-Verlag. 2007.
  • 6Adrian R J. Twenty years of particle image velocimetry[J].Experiments in Hydraulics, 2005,39(2): 159- 169.
  • 7Westerweel J. Fundamentals of digital particle image velocimetry [J]. Meas Sci Technol, 1997,8(12): 1379 - 1392.
  • 8Mark Kreizer, David Ratner, Alex Liberzon. Real-time image processing for particle tracking velocimetry. Exp Fluids,2010,48(1): 105- 110.
  • 9Cowen EA, Monismith SG.A hybrid digital particle tracking velocimetry technique[J]. Exp Fluids, 1997,22(3): 199- 211.
  • 10Mei R. Velocity fidelity of flow tracer particles[J]. Exp Fluids,1996, 22(1):1 - 13.

二级参考文献2

共引文献8

同被引文献104

引证文献13

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部