期刊文献+

快速球谐函数展开的并行算法设计及实现

Design and Implementation of Parallel Algorithm for Fast Spherical Harmonic Expansions
下载PDF
导出
摘要 球谐函数展开是一种广泛应用的数学方法.在研究Rokhlin-Tygert球谐函数展开快速算法(RT算法)的基础上,扩充并完善了RT算法,建立了所有阶连带Legendre多项式展开系数的计算过程,进而研究了该算法的MPI并行策略并给出了RT并行算法.数值实验表明,RT算法的计算量随三角截断波数的增大而急剧增长;MPI并行技术能够有效提高其运算速度,较好地提升算法的整体性能,但并行效率会受多核处理器cache大小和访存带宽的限制. Spherical harmonic expansions are a widely used tool of applied mathematics.Based on the research of Rokhlin-Tygert's fast algorithm for spherical harmonic expansions(RT algorithm),the procedure for computing expansion coefficients of all orders of associated Legendre functions is established,while the RT algorithm is extended and consummated.Furthermore,the strategy of MPI parallelization of RT algorithm is developed,and its parallel algorithm is designed and implemented.Numerical results show that,the computation of RT algorithm grows violently with the lift of the highest Fourier wave number of triangular truncations;MPI parallelization can efficiently bring up the computing speed and improve the performance of the algorithm.However,the efficiency of parallelization could be limited by the cache size of multi-cores processors and the bandwidth of memory access.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第8期26-31,共6页 Microelectronics & Computer
基金 国家自然科学基金项目(40505023)
关键词 球谐函数 连带Legendre多项式 MPI 并行算法 spherical harmonic associated Legendre function MPI parallel algorithm.
  • 相关文献

参考文献16

  • 1张理论 李晓梅 宋君强.谱方法数值计算研究进展.指挥技术学院学报,2001,12(6):98-103.
  • 2Vladimir Rokhlin, Mark Tygert. Fast algorithms for spherical harmonic expansions[J]. SIAM J SCI COM- PUT, 2006, 27(6):903-1928.
  • 3Mark Tygert. Fast algorithms for spherical harmonic expansions,Ⅱ[J]. Journal of Computational Physics, 2008 (227) : 4260-4279.
  • 4Mark Tygert. Fast algorithms for spherical harmonic expansions, Ⅲ [J]. Journal of Computational Physics, 2010( 229): 6181-6192.
  • 5Reiji Suda, Masayasu Takami. A fast spherical harmon- ics transform algorithm[J]. Mathematics of Computa- tion, 2001, 71(238): 703-715.
  • 6Martin J. Mohlenkamp. A fast transform for spherical harmonics[J]. The Journal of Fourier Analysis and Ap- plications, 1999,2(2/3): 159-184.
  • 7JBlais J A R, Provins D A, Soofi M A. Optimization of spherical harmonic transform computations[J]. Compu- tational Science, 2005(3514) : 393-401.
  • 8Marcia A Inda, Rob H Bisseling, David K Maslen. On the efficient parallel computation of legendre transforms [J]. SIAMJ SCI Comput, 2001, 23(1): 271-303.
  • 9Xiao Huadong, Lu Yang. Parallel computation for spherical harmonic synthesis and analysis[J]. Comput- ers Geosciences, 2007 (33):311-317.
  • 10Matthew G Reuter, Mark A Ratner, Tamar Seideman. A fast method for solving both time-dependent Schrod- inger equation in angular coordinates and its associated "m-mixing" problem [J]. The Journal of Chemical Physics, 2009(131) :94-108.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部