期刊文献+

面向智能电网的云数据处理系统评价方法 被引量:3

Performance Evaluation and Analysis Method of Cloud-based Data Processing System for Smart Grid
下载PDF
导出
摘要 智能电网数据处理系统需要存储从巨量设备端点周期性采集到的海量数据,处理高度并发的读写请求,并要求系统具有良好的可扩展性.新兴的云数据服务系统为我们提供了很好的选择.但是现在云数据服务系统种类繁多,各方面的性能存在差异,如何选择合适的云数据服务系统成为关键问题.基于智能用电场景,提出了一种对云数据服务系统的性能评价和分析方法,并利用该方法评测HBase、Voldemort和Cassandra三者的性能. Smart Grid data processing system needs to store the large-scale data collected from the mass device endpoint periodically,handle the high-concurrent read and write requests,and the high-scalability is more important.Cloud-based data serving systems provide a good choice for us.However the large variety of cloud-based data serving systems and the various performance make it difficult for developers to choose an appropriate system.Here we propose a method to benchmark the performance of cloud-based data serving systems based on the special scene of smart grid.Finally we benchmark the performance of HBase,Voldemort and Cassandra through our method.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第8期35-38,共4页 Microelectronics & Computer
基金 国网信息通信有限公司科技项目(SGIT[2010]449)
关键词 智能用电 云数据服务系统 评测 性能 Smart Grid Cloud-based data serving systems benchmark performance
  • 相关文献

参考文献5

  • 1Brian F Cooper, Adam Silberstein, Erwin Tam, et al.Benchmarking cloud serving systems with YCSB[C]// SoC-C' 10. Indianapolis, Indiana, USA, 2010.
  • 2Chris Bunch, Navraj Chohan, Chandra Krintz, et al. An e- valuation of distributed datastores using the appscale cloud platform, cloud[ C]// IEEE 3rd International Conference on Cloud Computing. USA: Florida, Miami, 2010.
  • 3Fay Chang, Jeffrey Dean, Sanjay Ghemawat, et al. Bigtable: a distributed storage system for structured data [J]. ACMTrans. Comput. Syst. 2008,26(2):26.
  • 4Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, et al. Amazon's highly available keyvalue store[C]// SOSPr07. Stevenson, Washington, USA,2007.
  • 5Avinash Lakshman,Prashant Malik. Cassandra - a decentralized structured storage system [C]// ACM SIGOPS Operating Systems Review archive. ACM New York, NY, USA, 2010,44(2) : 35-40.

同被引文献20

  • 1李广凯,李庚银.电力系统仿真软件综述[J].电气电子教学学报,2005,27(3):61-65. 被引量:119
  • 2赵伟,脱宇峰,杨银娟,蒋南,杜衍富.一种安全可靠的分布式气象数据库系统设计[J].应用气象学报,2006,17(2):250-256. 被引量:11
  • 3Microsoft About virtual machine templates [EB/OL]. [2012-04-02 ]. http: //technet. microsoft. com/en-us/ library/bb740838. aspx.
  • 4Clark C, Fraser K, Hand S, et al. Live migration of virtual machines [A]. NSDI'05 [C]. USENIX Association, 2005. 273 - 286.
  • 5Cully B, Lefebvre G, Meyer D, et al. Remus: high availability via asynchronous virtual machine replication [A]. NSDI'08 [C]. San Francisco, California.. USENIX Association, 2008. 161 - 174.
  • 6Dean J, Ghemawat S. MapReduce: a flexible data processing tool [J]. Communications of the ACM, 2010, 53(1): 72- 77.
  • 7Pregelj Aleksandar,Begovic Miroslav,Rohatgi Ajeet. Quantitative techniques for analysis of large data sets in renewable distributed generation[A].2004.
  • 8Pengsen Cheng,Junxiu An.The Key as Dictionary Compression Method of Inverted Index Table under the Hbase Database[J].Journal of Software.2013(5)
  • 9Michael Stonebraker.SQL databases v. NoSQL databases[J].Communications of the ACM.2010(4)
  • 10陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1311

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部