期刊文献+

一种基于信息熵的空间聚类算法

Space Clustering Algorithm Based on Information Entropy
下载PDF
导出
摘要 空间数据挖掘技术是从空间数据库中提取隐含的、用户感兴趣的知识.针对当前的聚类算法没有很好考虑到空间数据的复杂性和数据之间的联系,再加上聚类的精确度不高,设计了一种新的算法—基于信息熵的空间聚类算法(ESCA算法),该算法优先考虑空间数据的复杂性和数据之间的联系,并采用蚁群优化机制改善传统算法中聚类簇数不确定的缺点.实验结果表明该算法是可行,并且具有更高的精确度. Spatial data mining is to extract implicit spatial database,users are interested in knowledge.In this paper,the current clustering algorithm is not well taken into account the complexity of spatial data and the data link between the accuracy of clustering together is not high,designed a new algorithm-the space together based on information entropy Class of algorithm(ESCA algorithm),the algorithm complexity of spatial data priority and data link between the mechanisms by using ant colony optimization algorithm to improve the traditional shortcomings of cluster cluster number of uncertainties.Experimental results show that the algorithm is feasible and has higher accuracy.
作者 郑燕玲
出处 《微电子学与计算机》 CSCD 北大核心 2011年第8期225-227,230,共4页 Microelectronics & Computer
关键词 信息熵 空间数据挖掘 聚类 蚁群算法 information entropy spatial data mining clustering ant colony algorithm
  • 相关文献

参考文献5

二级参考文献43

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 2Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, 1981.
  • 3Pal N R, Bezdek J C. On cluster validity for the fuzzy c-mean model. IEEE Transactions on Fuzzy Systems, 1995,3 (3): 370-379.
  • 4Fadili M J, Ruan S, Bloyet D, Mayoyer B. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Medical Image Analysis,2001,5(1) :55-67.
  • 5Yu Jian,Cheng Qian-Sheng, Huang Hou-Kuan. On weighting exponent of the fuzzy c-means model. In: Proceedings of ICYCS2001, Hangzhou, 2001, II : 631- 633.
  • 6Bezdek J C, Hathaway R J, Sabin M J, Tucker W. Convergence theory for fuzzy c-means: Counter-examples and repairs.IEEE Transactions on SMC, 1987,17(5): 873-877.
  • 7Choe H,Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm. In: Proceedings of IEEE International Conference on Fuzzy Systems, 1992. 349-354.
  • 8Yi Shen, Hong Shi, Jian Qiu-Zhang. Improvement and optimization of a fuzzy c-means clustering algorithm. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001.
  • 9Tucker WT. Couterexamples to the convergence theorem for fuzzy ISODATA clustering algorithm. In: Bezdek J C ed. The Analysis of fuzzy Information, Boca Raton, FL: CRC Press,1987, 3:110-117.
  • 10Baraldi A, Blonda P, Parmiggiani F et al. Model transitions in descending FLVQ. IEEE Transactions on Neural Networks,1998,9(5) :724-737.

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部