摘要
提出了一种新的自适应的检测算法——量子遗传模糊聚类算法(QGFC).该算法利用量子遗传理论,在无监督的条件下,通过模糊聚类的方法对数据集进行自动分类,以达到自主识别入侵行为的目的.实验仿真结果显示,此算法可以有效地对入侵行为进行检测.
Adaptive problems have become increasingly prominent with the development of intrusion detection technologies.This paper presents a new adaptive detection algorithm——Quantum Genetic Fuzzy Clustering algorithm(QGFC).Under the unsupervised conditions,this algorithm uses quantum genetic theory to classify data sets automatically by means of fuzzy clustering.Hence,self-identification of invasions is achieved.The simulation results show that the proposed algorithm can effectively detect the intrusions.
出处
《开封大学学报》
2011年第2期78-81,共4页
Journal of Kaifeng University
关键词
入侵检测
量子遗传算法
模糊聚类算法
量子遗传模糊聚类算法
Intrusion Detection
Quantum Genetic Algorithm
Fuzzy Clustering Algorithm
Quantum Genetic Fuzzy Clustering Algorithm