期刊文献+

基于阴影流和3D MAP-MRF的运动阴影消除 被引量:3

Moving Shadow Elimination Based on Shadow Flow and 3D MAP-MRF
下载PDF
导出
摘要 阴影消除是运动检测中的一个重要问题。本文提出一种用阴影流和三维马尔可夫随机场后验概率最大化方法运动阴影消除算法。首先对每个像素建立混合高斯模型,通过阴影弱分类器,将可疑的阴影像素分离出来送到阴影流模型中。在线学习候选阴影像素,得到置信度高的阴影流模型。然后用混合高斯模型,阴影流和当前图像一起构建一个三维的马尔可夫随机场模型,将运动目标检测转化为标号组后验概率最大化/能量函数最小化。最后,构建一个与三维MRF对应的三维网络流图,通过动态图切算法,求出图的最小切,即求得MRF标号组的最大后验概率,从而给每个像素分配"前景"或"非前景"标号,达到消除阴影分割运动物体的目的。实验表明本方法在实际视频中取得了较好的效果。 Elimination of shadow is an important issue in moving object detection.In this paper,we present a novel approach of moving shadow elimination based on Shadow Flow and maximum a posteriori probability of 3D Markov Random Field(3D MAP-MRF). Firstly,Gaussian Mixture Model(GMM)is built as background model of per pixel.By comparing current pixel and GMM,we classify candidate shadow pixel through a shadow weak classifier and send it to Shadow Flow Model.Through on-line learning the candidate shadow which comes from weak classifier,our method get high confidence shadow model.Then,3D MRF is constructed of GMM, Shadow Flow and current images.MAP-MRF/min energy is deviated from moving object detection.Finally 3D graph is constructed according 3D MRF.A dynamic graph cuts algorithm is used to find min-cut/max-flow,which is equal to a maximum posteriori probability of label.Each pixel is assigned by"foreground"and"non-foreground"label,and moving object detection with shadow elimination is completed.Experiments show that our approach achieves excellent performance.
作者 李波 袁保宗
出处 《信号处理》 CSCD 北大核心 2011年第7期1048-1056,共9页 Journal of Signal Processing
基金 北京市优博项目(YB20081000401) 国家973计划(2006CB303105 2004CB318110) 国家自然科学基金项目(NO.60673109)
关键词 阴影消除 阴影流 马尔可夫随机场后验概率最大化 图切 混合高斯模型 运动目标检测 shadow elimination Shadow Flow maximum posteriori of Markov Random Field graph cuts Gaussian Mixture Model moving object detection
  • 相关文献

参考文献18

  • 1Prati, A., et al., Detecting moving shadows: algorithms and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2003. 25 (7) : 918-923.
  • 2Horprasert, T. , D. Harwood, and L. S. Davis. A statistical approach for real-time robust background subtraction and shadow detection. International Conference on Computer Vision 1999 : 1-19.
  • 3Mikic, I., et al. Moving shadow and object detection in traffic scenes. International Conference on Pattern Recognition, 2000: 321-324.
  • 4Cucchiara,R., et al. Improving shadow suppression in moving object detection with HSV color information. Proceedings of Intelligent Transportation Systems, 2001. : 334-339.
  • 5Stander, J., R. Mech, and J. Ostermann, Detection of moving cast shadows for object segmentation. IEEE Transactions on Multimedia, 1999. 1 ( 1 ) : 65-76.
  • 6Martel-Brisson, N. and A. Zaccarin, Learning and Removing Cast Shadows through a Multidistribution Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007. 29(7): 1133-1146.
  • 7Liu, Z., et al. Cast Shadow Removal CombiningLocal and Global Features. International Conference on Computer Vision and Pattern Recognition, 2007. : 1-8.
  • 8Choi, J. ,Y. J. Yoo, and J. Y. Choi, Adaptive shadow estimator for removing shadow of moving object. Computer Vision and Image Understanding, 2010. 114(9) : 1017-1029.
  • 9Stauffer, C. and W. E. L. Grimson, Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. 22 ( 8 ) : 747-757.
  • 10Boykov, Y.Y. and M. P. Jolly. Interactive graph cuts for optimal boundary &amp ; region segmentation of objects in N-D images. International Conference on. Computer Vision, 2001 : 105-112.

同被引文献38

  • 1刘婷,郭海湘,诸克军,高思维.一种改进的遗传k-means聚类算法[J].数学的实践与认识,2007,37(8):104-111. 被引量:22
  • 2张建文,陈军,王强.并行程序加速比计算和分析[J].科技广场,2006(1):15-16. 被引量:2
  • 3Liu Q J,Zhao Z M,Li Y X,Li Y Y.Feature selection based on sensitivity analysis of fuzzy ISODATA[J].Neurocomputing,2012,85 (15):29-37.
  • 4Green P J.Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J].Biometrika,1995,82(4):711-732.
  • 5Richardson S,Green P J.On Bayesian analysis of mixtures with an unknown number of components[J].Journal of the Royal Statistical Society,Series B,1997,59 (4):731-792.
  • 6Kato Z.Segmentation of color images via reversible jump MCMC sampling[J].Journal Image and Vision Computing,2006,26(3):361-371.
  • 7Dryden I L,Scarr M R,Taylor C C.Bayesian texture segmentation of weed and crop images using reversible jump Markov chain Monte Carlo methods[J].Journal of the Royal Statistical Society,Series C,2003,52 (1):31-50.
  • 8Askari G,Xu A G,Li Y,Seyed K A.Automatic determination of number of homogenous regions in SAR images utilizing splitting and merging based on a reversible jump MCMC algorithm[J].Journal of the Indian Society of Remote Sensing,2013,41 (3):509-521.
  • 9Permuter H,Francos J,Jermyn I.A study of Gaussian mixture models of colour and texture features for image classification and segmentation[J].Pattern Recognition,2006,39(4):695-706.
  • 10Ferreira A R.Bayesian mixture models of variable dimension for image segmentation[J].Computer Methods and Programs in Biomedicine,2009,94(1):1-14.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部