期刊文献+

拟共形映照的非爆破性

The non-explosion of quasi-conformal mapping
下载PDF
导出
摘要 R.M.Portor定义了K—拟共形映照在非欧度量下的双曲面积问题。若双曲面积有限的可测集合在某拟共形映照下的面积为无限的,则称此集合为爆破集,拟共形映照为爆破的。继【1】研究了单位圆上的径向映照的爆破性,并估计了其双曲面积偏差的基础上,进一步研究更一般的函数类,得到了它的非爆破的性质。另外,还研究了单位圆上的调和拟共形映照类,得到了它的非爆破性质。 R.M.Protor defines the hyperbolic metric under K-quasi-conformal mapping.The set with finite hyperbolic area is said to be k-explodable and the quasi-conformal mapping is explodable if there exists a quasi-conformal mapping and its hyperbolic area is infinite,Based on the [1] study on the radial mapping defined in the unit disk,and the estimation of the hyperbolic area distortion,we study the more general function class and find the condition which makes them nonexplodable.Then the quasi-conformal harmonic mapping in the unit disk is studied and its non-explosion has been proved.
作者 韩雪
出处 《贵州师范学院学报》 2011年第6期11-13,共3页 Journal of Guizhou Education University
基金 华侨大学科研基金资助项目(09HZR23)
关键词 拟共形映照 单叶调和映照 双曲面积 爆破 quasi-conformal mapping univalent harmonic mapping hyperbolic area explosion
  • 相关文献

参考文献5

  • 1陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111-116. 被引量:3
  • 2R. M. Porter, L. F. Bes6ndis. Quasiconformally explodable sets [ J ]. Complex Variables, 1998, 36 : 379 - 392.
  • 3韩雪,黄心中.拟共形映照的双曲面积偏差[J].华侨大学学报(自然科学版),2007,28(4):433-436. 被引量:2
  • 4Ch. Pommerenke. Univalent functions [ M ]. Vandenh oeck & Ruprecht in Gottingen, 1975:14 -16.
  • 5Miljan K, , Miodrag M. On the quasi -isometries of harmonic quasiconformal mappings[ J]. Math. Anal. Appl. , 2007 : 1 - 10.

二级参考文献11

  • 1[1]Mori A. On quasi-conformality and pseudo-analyticity[J]. Trans. Amer. Math. Soc., 1957, 84: 57~77
  • 2[2]Gehring F W, Reich E. Area distortion under quasiconformal mappings[J]. Ann. Acad. Sci. Fenn. Ser. AI Math., 1966, 388: 1~14
  • 3[3]Bojarski B. Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coefficients[J]. Math. Sb., 1957, 85: 451~503
  • 4[4]Astala K. Area distortion of quasiconformal mappings[J]. Ann. Acad. Sci. Fenn. Ser. AI Math., 1966. 388: 1~14
  • 5[5]Eremenko A. Hamilton D H. On the area distortion by quasiconformal mappings[J]. Proc. Amer. Math. Soc., 1995, 123: 2 793~2 797
  • 6[6]Porter R M. Reséndis L F. Quasiconformally explodable sets[J]. Complex Variables, 1998, 36: 379~392
  • 7ASTALA K. Area distortion of qusaiconformal mappings[J]. Acla Math, 1994,173 : 37-60.
  • 8EREMENKO A, HAMILTON D H. On the area distortion by quasiconformalmappings[J]. Proc Amer Math Soc, 1995,123 : 2793-2797.
  • 9PORTER R M,ReSNDIS I. F. Quasiconformally explodable sets[J]. Complex Variables, 1998,36:379-392.
  • 10PAVLOVIC M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J]. Ann Acad Sci Math, 2002,27:365-372.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部