摘要
针对最大似然(maxi mumlikelihood,ML)方位估计方法多维非线性搜索计算量大的问题,将连续空间蚁群算法与最大似然算法相结合,提出基于蚁群算法的最大似然(ant colony optimization based maxi mumlike-lihood,ACOML)估计新方法。该方法将传统蚁群算法中的信息量留存过程拓展为连续空间的信息量高斯核概率密度函数,得到最大似然方位估计的非线性全局最优解。仿真结果表明,ACOML方法保持了原最大似然方位估计方法算法的优良估计性能,而计算量只是最大似然方法的1/15。
A new maximum likelihood direction of arrival(DOA) estimator based on ant colony optimization(ACOML) is proposed to reduce the computational complexity of multi-dimensional nonlinear existing in maximum likelihood(ML) DOA estimator.By extending the pheromone remaining process in the traditional ant colony optimization into a pheromone Gaussian kernel probability distribution function in continuous space,ant colony optimization is combined with maximum likelihood method to lighten computation burden.The simulations show that ACOML provides a similar performance to that achieved by the original ML method,but its computational cost is only 1/15 of ML.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2011年第8期1718-1721,共4页
Systems Engineering and Electronics
基金
国家自然科学基金(60972152)
航空科学基金(2009ZC53031)
国家重点实验室基金(9140C2304080607)
西北工业大学基础研究基金(NPU-FFR-W018102)资助课题
关键词
阵列信号处理
方位估计
最大似然估计
蚁群算法
计算复杂度
array signal processing
direction-of-arrival estimation
maximum likelihood estimation
ant colony optimization
computational complexity