期刊文献+

微流控芯片电泳电导检测分离分析尿蛋白 被引量:3

Separation and Detection of Urinary Proteins by Microfluidic Chip Integrated Contactless Conductivity Detector
下载PDF
导出
摘要 基于自行构建的微流控芯片电泳集成非接触式电导检测分析系统,建立了一种集进样、分离与检测为一体的微流控芯片电泳电导检测蛋白质的方法,并用于人白蛋白(HSA)和人转铁蛋白(TRF)两种尿蛋白的分离分析以及肾病综合症病人尿液中白蛋白的定量检测。考察并优化了缓冲液、分离电压、进样方式、进样时间等电泳分离的影响因素,在缓冲液为pH=10的10mmol/L硼砂溶液,电进样场强为300V/cm,进样时间10s,分离电压为600V的实验条件下,10min内完成了HSA和TRF的分离检测,分离度为2.0;检出限分别为0.4和0.8g/L(S/N=3),在1~5g/L线性范围内相关系数分别为0.9478和0.9491。实验中肾病综合症病人尿样中HSA的加标回收率为95.4%~104.1%。 Based on the homemade analytical microsystem with the micro-fluidic chip integrated contactless conductivity detector,a new separating and detecting method of proteins on microchip with sample injection,separation,and detection was proposed.Human serum albumin(HSA) and human transferrin(TRF) in urine samples from nephritic syndrome patients were separated on the designed microsystem,and HSA was quantitavely detected.Factors affecting on-chip electrophoresis processes,such as running buffer,separating voltage,injection modes and sampling time were investigated and optimized.Under the optimized conditions of 10 mmol/L borax buffer(pH=10),600 V separation voltage,and 300 V/cm electrical field strength and 10 s injection time,human serum albumin(HSA) and human transferring(TRF) were separated in 10 min with resolution of 2.0.The detection limits of HSA and TRF were 0.4 and 0.8 g/L(S/N=3),respectively.The correlation coefficients of the detection in the linear range of 1-5 g/L were at 0.9478 and 0.9491,respectively.The recoveries of HSA in the sample of patient urine were at 95.4%-104.1%.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2011年第8期1123-1128,共6页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.20675089) 全国博士学位论文作者专项资金(No.FSNEDD-200941) 重庆市科技攻关项目(CSTC,No.2010AC5050) 重庆大学研究生科技创新基金(No.CDJXS10-22-11-39) 中央高校基本科研业务费(No.CDJXS1-22-00-05)资助项目
关键词 微流控芯片 集成电导检测 尿蛋白 电泳分离 Micro-fluidic chip Integration conductivity detector Urine protein Electrophoresis separation
  • 相关文献

参考文献1

二级参考文献15

  • 1张志文,邹长江.单克隆抗体生产的新时代[J].生物化学与生物物理进展,1994,21(2):139-143. 被引量:3
  • 2Kohler G, Milstein C. Nature, 1975, 256 : 495 - 497.
  • 3Weber K, Osborn M. Journal of Biological Chemistry, 1969, 244:4406 -4412.
  • 4Andrews A T. Electrophoresis: Theory, Techniques and Biomedical and Clinical Application, 2nd ed. ; Clarendon Press: Oxford, 1986.
  • 5Guo Yao-Jun(郭尧君).Experiment Techniques of Proteins Electrophoresis(蛋白质电泳实验技术).Beijing(北京):Science Press(科学出版社),1999.123-160.
  • 6Hunt G, Moorhouse K G, Chen A B. J. Chromatogr. A, 1996, 744:295 -301.
  • 7Hunt G, Nashabeh W. Anal. Chem. , 1999, 71:2390-2397.
  • 8Solano S O, Tomlinson B, Du S, Parker M, Strahan A, Ma S. Anal. Chem. , 2006, 78:6583 - 6594.
  • 9Lin Bing-Cheng(林炳承),Qin Jian-Hua(秦建华).Microfluidics Based Laboratory on a Chip(微流控芯片实验室).Beijing( 北京 ) : Science Press ( 科学出版社 ), 2005.
  • 10Yao S, Anex D S, Caldwell W B, Arnold D W, Smith K B, Schultz P G. Proceedings of the National Academy of Sciences, 1999, 96 : 5372 - 5377.

共引文献6

同被引文献29

  • 1罗怡,娄志峰,褚德南,刘冲,王立鼎.玻璃微流控芯片的制作[J].纳米技术与精密工程,2004,2(1):20-23. 被引量:16
  • 2张峰,张宏毅,周勇亮,杨渭,陈彬彬.湿法腐蚀硅制作PDMS微流控芯片[J].机械工程学报,2005,41(11):194-198. 被引量:5
  • 3陈强,李刚,潘爱平,金庆辉,赵建龙,程建功,徐元森.玻璃微流控芯片廉价快速制作方法的研究[J].化学学报,2007,65(17):1863-1868. 被引量:10
  • 4熊立凡,李树仁.临床检验基础,[M].北京:人民卫生出版社,2006:187.
  • 5Abgrall P, Gue A M. J. Micromech. Microeng. , 2007, 17(5): 15-49.
  • 6Bashir R. Adv. Drug Deliver. Rev., 2004, 56(11): 1565-1586.
  • 7Lin C C, Hsu J L, Lee G B. Microfluid. Nanofluid. , 2011, 10(3) : 481-511.
  • 8LienK Y, LinJ L, LiuCY, LeiH Y, LeeGB. Lab Chip, 2007, 7(7): 868-875.
  • 9Sabounchi P, Morales A M, Ponce P, Lee L P, Simmons B A, Davalos R V. Biomed. Microdevices, 2008, 10(5) :661-670.
  • 10LeeBS, LeeJ N, ParkJ M, LeeJ G, Kim S, Cho YK, KoC. Lab Chip, 2009, 9(11): 1548-1555.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部