期刊文献+

量子稳定子码的差错纠正与译码网络构建 被引量:1

Error correction and decoding for quantum stabilizer codes
原文传递
导出
摘要 寻找差错症状与差错算子之间映射关系是量子译码网络的核心内容,也是量子译码网络实现纠错功能的关键.给出了比特翻转差错症状矩阵和相位翻转差错症状矩阵的定义,将任意Pauli差错算子的差错症状表示为比特翻转差错症状矩阵和相位翻转差错症状矩阵的线性组合.研究发现,量子稳定子码的差错症状矩阵由其校验矩阵所决定,从而可将差错症状矩阵与差错算子之间的映射关系转化为校验矩阵与差错算子之间的映射关系,使得所有关于差错症状的分析都可以通过分析其校验矩阵来实现.这与经典线性码的差错症状与奇偶校验矩阵之间的关系类似,因此可以将经典线性码的差错检测和纠正相关成果扩展到量子码的译码过程.基于差错算子与差错症状之间的对应关系给出了构造量子差错纠正电路的方法,根据编码算子的酉性得到了基于编码算子逆算子的译码网络构建方法. Mapping the error syndromes to error operators is the core of quantum decoding network and the key step to realize quantum error correction.The definitions of the bit flip error syndrome matrix and the phase flip error syndrome matrix are presented,and then the error syndromes of Pauli errors are expressed in terms of the columns of the bit flip error syndrome matrix and the phase flip error syndrome matrix.It is also shown that the error syndrome matrix of a stabilizer code is determined by its check matrix,which is similar to the relationship between the classical error and the parity check matrix of classical codes.So,the techniques of error detection and error correction for classical linear codes can be applied to quantum stabilizer codes after some modifications.The error correction circuits are constructed based on the relationship between the error operator and error syndrom.The decoding circuit is constructed by reversing the encoding circuit because the encoding operators are unitary.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第8期25-31,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60873101) 江苏省自然科学基金(批准号:BK2008209) 计算机网络和信息集成教育部重点实验室基金资助的课题~~
关键词 稳定子码 校验矩阵 差错症状 Pauli算子 stabilizer code check matrix error syndrome Pauli operator
  • 相关文献

参考文献14

  • 1Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p72.
  • 2Calderbank A R, Rains E M, Shor P W, Sloane J A 1998 IEEETrans. Inform. Theory 44 1369.
  • 3Ketkar A, Klappenecker A, Kumar S 2006 IEEE Trans. Inform. Theory 52 4892.
  • 4LiY, Zeng G H, Moon H L2009 Chin. Phys. B 18 4154.
  • 5Cleve R, Gottesman D 1997 Phys. Rev. A $6 76.
  • 6Gottesman D 1997 Ph. D. Dissertation (Pasadena: California Institute of Technology).
  • 7Wu C H, Tsai Y C, Tsai H L 2005 Circuits and Systems ( Kobo: Springer-Verlag) p23.
  • 8Forney G D, Grassl M, Guha S 2007 IEEE Trans. Inform. Theory 53 865.
  • 9Wilde M M 2009 Phys. Rev. A 79 062325.
  • 10Poulin D, Chung Y J 2008 Quantum Inform. Comput. 8 987.

同被引文献15

  • 1钟淑琴,马智,许亚杰.基于逻辑函数的量子纠错码构造[J].中国科学:信息科学,2010,40(2):249-257. 被引量:2
  • 2Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000. 72-145.
  • 3Poulin D, Tillich J P. Quantum serial turbo codes. IEEE Trans Inf Theory, 2009, 55: 2776-2798.
  • 4Ollivier H, Tillich J P. Trellises for stabilizer codes: de nition and uses. Phys Rev A, 2006, 74: 032304.
  • 5Calderbank A R, Rains E M, Shor P W, et al. Quantum error correction via codes over GF(4). IEEE Trans Inf Theory,1998, 44: 1369-1387.
  • 6Ketkar A, Klappenecker A, Kumar S, et al. Nonbinary stabilizer codes over nite elds. IEEE Trans Inf Theory, 2006,52: 4892-4914.
  • 7Aggarwal V, Calderbank A R. Boolean function, projection operators, and quantum error correcting codes. IEEE Trans Inf Theory, 2008, 54: 1700-1707.
  • 8Cross A, Smith G, Wehner S, et al. Codeword stabilized quantum codes. IEEE Trans Inf Theory, 2009, 55: 433-438.
  • 9Rahn B, Doherty A C, Mabuchi H. Exact performance of concatenated quantum codes. Phys Rev A, 2002, 66: 032304.
  • 10Hsieh M H, Gall F L. NP-hardness of decoding quantum error correction codes. ArXiv: quant-ph/10091319.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部