期刊文献+

有限振幅声波间的非线性相互作用对声源远场指向性的影响 被引量:5

Effect of finite-amplitude acoustic wave nonlinear interaction on farfield directivity of sound source
原文传递
导出
摘要 根据Fenlon理论推导得到了多频声源的辐射声压.基于单频声源谐波指向性的求解方法,得到了二阶近似下的双频声源辐射出的声波相互作用时的远场指向性.分别研究和讨论了在初始辐射声压和频率不同情况下,两列波的相互作用对其中一列波的一阶波和二阶波远场指向性的影响.结果表明,声波间的相互作用对声源远场指向性的影响根据各波之间的相对初始辐射声压和相对频率的不同而有所变化. The acoustic radiation pressure expression of a multi-frequency sound source is obtained on the basis of the Fenlon theory.Then using the solution method of a monochromatic source harmonic wave directivity,farfield directivity of second-order approximate is obtained in the case of the dual-frequency sound source interaction.Subsequently,the effect of two-wave interaction on the farfield of first-order and second-order wave of either wave is studied and discussed when the initial radiation pressures and frequencies are different.The conclusion is that there are some different effects of sound wave interaction on the farfield directivity of a sound source,when the relative initial radiation pressure and frequency between the sound waves is changed.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第8期371-378,共8页 Acta Physica Sinica
关键词 有限振幅声波 非线性相互作用 远场指向性 finite-amplitude sound waves nonlinear interaction farfield directive
  • 相关文献

参考文献17

  • 1Ingard U, Pridmore-Brown D C 1956 J. Acoust. Soc. Am. 28 564.
  • 2Westervelt P J 1957 J. Acoust. Soc. Am. 29 973.
  • 3Westervelt P J 1963 J. Acoust. Soc. Am. 35 535.
  • 4Fenlon F H 1972 J. Acoust. Soc. Am. 51 284.
  • 5Fenlon F H 1973 J. Acoust. Soc. Am. 53 1752.
  • 6Fenlon F H 1979 J. Acoust. Soc. Am. 66 534.
  • 7Qian z W 1976 Acta Phys. Sin. 25 472 (in Chinese).
  • 8Qian z W 1988 Acta Phys. Sin. 37 221 (in Chinese) I.
  • 9Qian z w 1981 Acta Phys. Sin. 311 433 (in Chinese).
  • 10Qian z w 1981 Acta Phys. Sin. 30 442 (in Chinese).

同被引文献28

  • 1徐桂琼,李志斌.变系数KdV方程组的精确解[J].应用数学和力学,2005,26(1):92-98. 被引量:4
  • 2WESTERVELT P J. Parametric acoustic array[J]. The Journal of the Acoustical Society of America, 1963, 35(4):535-537.
  • 3BERKTAY H O. Possible exploitation of non-linear acoustics in underwater transmitting applications[J]. Journal of Sound and Vibration, 1965, 2(4):435-461.
  • 4DI MARCOBERARDINO L, MARCHAL J, CERVENKA P. Nonlinear multi-frequency transmitter for sea-floor characterization[C]//Proceedings of the Acoustics Conference. Nantes, France, 2012:2800-2805.
  • 5BIRKEN J A. Empirical results from frequency-scanning nonlinear sonar in deep water[J]. The Journal of the Acoustical Society of America, 1974, 56(S1):S41.
  • 6KAMAKURA T, HAMADA N, AOKI K, et al. Nonlinearly generated spectral components in the near-field of a directive sound source[J]. The Journal of the Acoustical Society of America, 1989, 85(6):2331-2337.
  • 7NAZE TJ?TTA J, TJ?TTA S, VEFRING E H. Propagation and interaction of two collinear finite amplitude sound beams[J]. The Journal of the Acoustical Society of America, 1990, 88(6):2859-2870.
  • 8LEE Y S, HAMILTON M F. Time-domain modeling of pulsed finite-amplitude sound beams[J]. The Journal of the Acoustical Society of America, 1995, 97(2):906-917.
  • 9KAMAKURA T, SAKAI S, NOMURA H, et al. Parametric audible sounds fields by phase-cancellation excitation of primary waves[J]. The Journal of the Acoustical Society of America, 2008, 123(5):3694.
  • 10KAMAKURA T, NOMURA H, SAKAI S. Spatial phase-inversion technique for parametric source with suppressed carrier[J]. The Journal of the Acoustical Society of America, 2009, 125(4):2717.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部