期刊文献+

自适应特征筛选的地雷目标AdaBoost分类器 被引量:1

The AdaBoost Classification of Land-mine Target with Adaptive Feature Selection
下载PDF
导出
摘要 为解决前视地表穿透虚拟孔径雷达中地雷的分类问题,在传统AdaBoost算法的基础上,将特征选择作为弱分类器迭代的一部分,并将恒探测率下的虚警率作为特征选择的代价函数,提出一种基于弱分类器迭代及自适应特征选择的分类算法。通过实测数据验证,该分类算法适用于前视地表穿透虚拟孔径雷达中地雷与杂波的分类,同传统AdaBoost算法相比,分类性能有很大改善。 In order to solve the land-mine classification problem on a Forward-Looking Ground Penetrating Virtual Aperture Radar(FLGPVAR),a new classification algorithm composed of weak classification iteration and adaptive feature selection is proposed.It is based on traditional AdaBoost algorithm,the feature selection is part of weak classification iterations,and the false alarm is treated as the cost function under constant detection rate.It is proved by real data that the method is applicable to the classification of land-mine and clutter on forward-looking ground penetrating virtual aperture Radar and the performance is better than traditional AdaBoost algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第8期1798-1802,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60972121) 全国优秀博士学位论文作者专项资金(201046)资助课题
关键词 前视成像雷达 地雷探测 特征选择 分类器 ADABOOST Forward-looking imaging radar Land-mine detection Feature selection Classification AdaBoost
  • 相关文献

参考文献13

  • 1Liu Guo-qing, Wang Yan-wei, Li Jian, and et al. SAR imaging for a forward-looking GPR systemic1. Proceedings of SPIE, 2003, Vol.5089: 322-333.
  • 2陈琦,杨汝良.机载前视合成孔径雷达Chirp Scaling成像算法研究[J].电子与信息学报,2008,30(1):228-232. 被引量:35
  • 3Jn Tian and Zhou Zhi-min. Imaging model of forwardlooking ground penetrating radar with split-aperture traasmitting eonfiguration[C]. 2nd Asian and Pacific Conference on Synthetic Aperture Radar, Xi'an, China, 2009: 21 24.
  • 4Kositsky J, Cosgrove R, Amazeen C, et al.. Results from a forward-looking GPR mine detection system [C]. Proceedings of SPIE, 2002, Vol.4742: 205-217.
  • 5Bradley M, Witten T, Duncan M, et al. Mine detection wit.h a forward-looking ground-penetrating synthetic aperture radar [C]. Proceedings of SHE, 2003, Vol.5089:334 347.
  • 6陆必应,宋千,周智敏.步进频率连续波探地雷达数字信号处理机[J].雷达科学与技术,2010,8(3):229-232. 被引量:10
  • 7Preund Y and Schapire R E. A decision-theoretic generalization of on-line learning and all application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
  • 8Sun Yi-jun and Li Jian. Adptive learning approach to landmine detection[J]. IEEE Transactians on Aerospace and Electronic Systems, 2005, 41(3): 973-985.
  • 9Guyon I and Elisseeff A. An introduction to variable and feature selection [J]. Journal of Machine Learning Research, 2003, 21(3): 1157 1182.
  • 10Viola P and Jones M. Rapid object detection using a boosted cascade of simple features[C]. Proc. CVPR 2001, ttawaii, USA, 2001, 1:511-518.

二级参考文献16

  • 1方广有,佐藤源之.频率步进探地雷达及其在地雷探测中的应用[J].电子学报,2005,33(3):436-439. 被引量:33
  • 2顾颖,张雪婷,张飚.基于ADSP-TS201S的通用雷达信号处理机的设计[J].现代雷达,2006,28(6):49-51. 被引量:12
  • 3陈凤友,孙翱.基于工控机的雷达数据终端的设计与实现[J].现代雷达,2006,28(12):80-81. 被引量:2
  • 4王建.车载前视超宽带SAR浅埋目标成像技术研究[D].长沙:国防科技大学,2008.
  • 5http://www.dlr.de/hr/sirev/home.html
  • 6Sutor T, Buckreuss S, and Krieger G. Sector Imaging Radar for Enhanced Vision(SIREV): Theory and applications. Enhanced and Synthetic Vision 2000, Proceedings of SPIE, 2000, Vol.4023: 292-297.
  • 7Sutor T, Witte F, and Moreira A, A new Sector Imaging Radar for Enhanced Vision- SIREV. Enhanced and Synthetic Vision 1999, Proceedings of SPIE, 1999, Vol.3691: 39-47.
  • 8Mittermayer J, Wendler M, and Krieger G. Sector Imaging Radar for Enhanced Vision(SIREV): Simulation and Processing Techniques. Enhanced and Synthetic Vision 2000, Proceedings of SPIE, 2000, Vol.4023: 298-305.
  • 9Mittermayer J, Wendler M, and Krieger G. Data processing of an innovative forward looking SAR system for enhanced vision. In proc. EUSAR 2000, 2000, Munich: 733-736.
  • 10Krieger G , Mittermayer J, and Wendler M. Sector imaging radar for enhanced vision. Aerospace Science and Technology, ELSEVIER, 2003, Vol.7: 147-158.

共引文献41

同被引文献20

  • 1金添,宋千,孙晓坤,周智敏.地表穿透合成孔径雷达浅地表金属地雷二维电磁特征研究[J].电子学报,2006,34(12):2246-2249. 被引量:9
  • 2L. Happ, F. Le, M. Ressler and K. Kappra, Low-frequen- cy ultra wideband synthetic aperture radar: frequency subbanding for targets obscured by the ground [ C ]. Pro- ceedings of SPIE, 1996,2747 : 194-201.
  • 3J. Kositsky, Results from a forward-looking GPR mine de- tection system [ C ]. Proceedings of SPIE, 2000, 4038 (Ⅱ) :1077-1087.
  • 4J. Haupt and R. Nowak, Signal reconstruction from noisy random projections[ J]. IEEE Trans. Inf. Theory, 2006, 52(9) :4036-4048.
  • 5D. Donoho, M. Elad, and V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Trans. Inf. Theory, 2006,52(1):6-18.
  • 6Petros Boufounos, Marco F. Duarte, Richard G. Barani- uk. Sparse Signal Reconstruction from Noisy Compressive Measurements using Cross Validation[ C]. IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, 2007.6, pp :299-303.
  • 7王建,车载前视超宽带SAR浅埋目标成像技术研究[D].[博士论文].国防科技技术大学,2008.
  • 8D. L. Donoho. Compressed sensing [ J]. IEEE Transac- tions on Information Theory, 2006,52(4) :1289-1306.
  • 9Candes E J, Romberg J, and Tao T. Stable signal recover- y from incomplete and inaccurate ts [J] Communications on Pure and Applied Mathematics, 2006.59 (8) : 1207-1223.
  • 10Baraniuk R. Compressive sensing [ J ]. IEEE Signal Pro- cessing Magazine, 2007,24 ( 4 ) : 118-121.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部