期刊文献+

单李代数的抛物子代数上保括积的非线性可逆映射

Non-linear Invertible Maps on Parabolic Subalgebras Preserving Lie Products
下载PDF
导出
摘要 设g为复数域C上的单李代数,Pπ是g的标准抛物子代数.证明了李代数Pπ上的映射φ是保括积的非线性双射当且仅当φ可以表示为李代数Pπ上内自同构、图自同构、对角自同构、复数域上自同构诱导的映射的乘积.由此推导出李代数Pπ上的自同构可表示为李代数Pπ上内自同构、图自同构、对角自同构的乘积. Let g be a complex simple Lie algebra,Pπ is standard parabolic subalgebra of g.Prove that a non-linear bijective map φ on Pπ preserves Lie products if and only if it is a product of an inner automorphism,a graph automorphism,a diagonal automorphism and a bijective map extended by an automorphism of the complex field.As its corrolary,any automorphism of Pπ is a product of an inner automorphism,a graph automorphism,a diagonal automorphism.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期1-6,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省高校服务海西重点建设项目-基于数学的信息化技术研究
关键词 单李代数 抛物子代数 非线性映射 自同构 simple Lie algebra standard parabolic algebra non-linear map automorphism
  • 相关文献

参考文献11

  • 1Li C K, Tsing N K. Linear preserver problem: a brief introduction and some special techniques [J]. Linear Algebra Appl. 1992. 162: 217-235.
  • 2Pierce S. A survey of linear preserver problems [J]. LinMul Alg, 1992, 33: 1-192.
  • 3Li C K. Pierce S. linear preserver problem [J].Amer Math Monthly, 2001, 108: 591-605.
  • 4Marcus M. Linear operations of matrices [J]. Amer Math Monthly, 1962, 69: 837-847.
  • 5Dolinar G. Maps on upper triangular matrices preserving Lie products [J]. Lin Mul Alg, 2007, 55: 191-198.
  • 6Dolinar G. Maps on M,, preserving Lie products[J]. Publ Math Debrecen, 2007, 71: 467-477.
  • 7Chen L, Zhang J H. Nonlinear Lie devivations on upper triangular matrices [J].Lin Mul AIg, 2008, 56: 725- 730.
  • 8Semrl P. Non-linear commutativity preserving maps [J]. Acta Sci Math, 2005, 71: 781-819.
  • 9Chen Z, Wang D. Nonlinear maps satisfying derivability on standard parabolic subalgebras of finite-dimensional simple Lie algebras [J]. Lin Mul Alg, 2011, 59: 261-270.
  • 10Wang D, Zhao Y. Chen Z. Non-linear maps on simple Lie algebras preserving Lie product [J]. Comm Alge. 2011, 39: 424-434.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部