期刊文献+

基于降维的聚类可视化技术 被引量:4

Clustering Visualization Technology Based on Dimension Reductions
下载PDF
导出
摘要 基于降维或映射技术的聚类结果可视化技术提供了在二维或三维空间直观地分析数据集的聚类结构、聚类质量和分布信息的有效手段.对线性降维可视化方法、非线性降维可视化方法及映射可视化方法等进行了介绍、实例展示和讨论分析,最后对这类方法的优缺点、存在的问题和进一步的研究方向做了总结和展望. Clustering visualization technology based on dimension reductions provides efficient means of analyzing the cluster structure and data distribution of a dataset in a two or three dimensional space.This survey introduces the linear-dimension-reduction visualization methods,nonlinear-dimension-reduction visualization methods,and projection-based visualization methods.
作者 王开军
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期50-54,60,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省高校服务海西建设重点项目基于数学的信息化技术研究 福建省教育厅资助项目(JA09043)
关键词 聚类分析 聚类可视化 降维 映射 clustering analysis clustering visualization dimension reduction projection
  • 相关文献

参考文献23

  • 1Xu R, Wunsch II D C. Survey of clustering algorithms [J].IEEE Transactions on Neural Networks, 2005, 16 (3): 645-678.
  • 2Frey B J. Dueck D. Clustering by passing messages between data points [J].Science, 2007, 315 (5814) : 972- 976.
  • 3Pearson K. On lines and planes of closest fit to systems of points in space [J]. Philosophical Magazine, 1901, 2 (6): 559-572.
  • 4Hujun Yin.Nonlinear Dimensionality Reduction and Data Visualization:A Review[J].International Journal of Automation and computing,2007,4(3):294-303. 被引量:4
  • 5罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 6肖传乐,曹槐.基于流形学习的基因表达谱数据可视化[J].生物信息学,2009,7(1):47-51. 被引量:8
  • 7赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 8Weinberger K Q, Sha F, Saul L K. Learning a kernel matrix for nonlinear dimensionality reduction [C] // Proceedings of the 21st International Conference on Machine Learning (ICML), Banff, Canada, 2004, 839-846.
  • 9van der Maaten L, Postma E, van den Herik J. Dimensionality reduction: a comparative review[J]. Journal of Machine Learning Research, 2009, 10: 1-41.
  • 10Rowels S T, Saul I, K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290 (5500): 2323-2326.

二级参考文献70

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3高利宏,曹佳.基因芯片可靠性分析及数据处理[J].第三军医大学学报,2006,28(1):80-82. 被引量:8
  • 4徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 5Lander,E.S.Array of hope[J].Nature Genetics,1999,21 (Sup.2pl):3-4.
  • 6Scott,D.W.Multivariate Density Estimation:Theory,Practice and Visualization[M].Wiley Series in Probability and Mathematical Statistics.New York,London,Sydney:John Wiley & Sons,1992.
  • 7Golub,T.R.,Slonim,D.K.,Tamayo,P.,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 8Wang,J.,B?,T.H.,Jonassen,I.,et al.Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data[J].BMC Bioinformatics,2003,4:60.
  • 9Sebastian HS, Lee DD. The manifold ways of perception. Science, 2000,290(12):2268-2269.
  • 10Roweis ST, Saul LK. Nonlinear dimensionality analysis by locally linear embedding. Science, 2000,290(12):2323-2326.

共引文献133

同被引文献36

  • 1芮小平.一种基于不完全四叉树的LOD生成算法[J].中国图象图形学报,2005,10(9):1152-1160. 被引量:16
  • 2余肖生,周宁,张芳芳.高维数据可视化方法研究[J].情报科学,2007,25(1):117-120. 被引量:12
  • 3彭红毅,蒋春福,朱思铭.一种改进的高维数据可视化模型[J].计算机科学,2007,34(4):175-178. 被引量:4
  • 4Inselberg A, Dimsdale B. Parallel Coordinates : A Tool for Visualizing Muti - Dimensional Geometry [ C ]. San Francisco CA : IEE VISUALIZATION Conf, 1990.
  • 5Frey B J, Dueck D. Clustering by passing messages between data points[ J]. Science, 2007, 315:972 - 976.
  • 6Hilbert K, Brunnett G. A hybrid LOD based rendering approach for dynamic cenes [C].//Proceedings of the 2004 Computer Graph- ics International Washington, DC IEEE Computer Society,2004.. 274-277.
  • 7Wang C, Shen H W. LOD map-A visual interlace for navigating multiresolution volume visualization [J]. IEEE Transactions on Visu- alization and Computer Graphics, 2006, 12(5) 1 029-1 036.
  • 8Shneiderman B, Wattenberg M. Ordered tree map layouts[C].//Proceedings of the IEEE Symposium on Information Visualization. Washington, DC IEEE Computer Society, 2001: 73-78.
  • 9Frey B J, Dueck D. Clustering by passing messages between data points[J]. Science, 2007,315 (5 814) : 972-976.
  • 10刘鑫,司锡才.基于平面变换的雷达脉冲信号分选算法[J].应用科技,2008,35(10):12-16. 被引量:9

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部