期刊文献+

电机故障自动识别在电机生产线上的应用 被引量:6

Automatic Identification of Noise Faults Applied to Motors Production Line
下载PDF
导出
摘要 电机出厂检测非常重要。为了确保质量控制,目前电机厂多是通过操作者听电机声音判定噪声故障。而该文将研究模式识别技术在小型电动机生产线上电机故障检测中的应用。由于工业现场环境,系统首先采用小波分析对振声信号进行消噪,提取有用信号。再利用小波技术多分辨率特点和小波能谱熵提取故障信号的特征信息,最后结合概率论参数区间估计法获得小波熵带,对故障电机自动识别。 It is very important to inspect finished motors.In most cases,an operator listens to the motor and audibly detects the noise faults to guarantee on-line quality control.This paper dealed with application of pattern recognition techniques to perform an automatic identification of noise faults in small motors applied to production line.Due to noisy conditions in industrial environments,this paper described a preprocessor based on wavelet analysis to suppress undesired noise.Moreover,faults feature is extracted by multi-resolution characteristics of wavelet technique and wavelet entropy spectrum theory.At last,wavelet entropy inter-zone established based on inter-zone estimate is used to identify defect motor automatically.
出处 《微电机》 北大核心 2011年第7期101-103,共3页 Micromotors
关键词 电机故障 小波 模式识别 motor fault wavelet pattern recognition
  • 相关文献

参考文献5

二级参考文献16

  • 1何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43. 被引量:188
  • 2肖余粮,和卫星,陈晓平,吉奕,吴秋明.小波变换和小波熵在睡眠脑电信号变化特性研究中的应用价值[J].中国临床康复,2006,10(25):118-120. 被引量:11
  • 3KIM H, LING H.Wavelet analysis of radar echo from finite-size targets [J]. IEEE Trans on AP, 1993,41(2):200-207.
  • 4DONOHO D L. De-noising by soft-thresholding [J]. IEEE Trans on Infor Theory, 1995, 41(3):613-626.
  • 5Celik A N. Assessing the suitability of wind speed probability distribution functions based on wind power density[J]. Renewable Energy, 2003, 28(10): 1563-1574.
  • 6Cheng Nian-Sheng, Wing-Keung, Law Adrian Lia Siowyong.Probability distribution of bed particle instability[J]. Advances in Water Resources, 2003, 26(4): 427433.
  • 7Toshio T, Tomoya N, Chen Peng. Condition monitoring and diagnosis of rotating machinery by Gram-Chariier expansion of vibration signal[J]. International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 2000, 2: 541-544.
  • 8David L. Romagnoli jose. dynamic probabilistic model-based expert system for fault diagnosis[J]. Computers and Chemical Engineering,2000, 24(11): 2473-2492.
  • 9Lee Sunggu, Shin Kang G. Optimal and efficient probabilistic distributed diagnosis schemes[J]. IEEE Transactions on Computers,1993, 42(7): 882-886.
  • 10张建民,杨永全,戴光清.高拱坝挑跌流泄洪消能水垫塘底板稳定性研究[J].四川大学学报(工程科学版),2000,32(2):17-21. 被引量:10

共引文献22

同被引文献23

  • 1张万来.GCH-180电机出厂自动检测线[J].中小型电机,1996,23(3):41-44. 被引量:3
  • 2谷爱昱,张敬春,莫慧芳.基于虚拟仪器的电机故障声测系统[J].电机与控制应用,2006,33(2):56-58. 被引量:8
  • 3杨青川,华宇宁,张悦.基于LabVIEW的虚拟小波消噪仪的设计与实现[J].仪表技术与传感器,2007(4):13-14. 被引量:9
  • 4Benko U, Petrovcic J, Juricic D, et al. Fault diagnosis of a vacuum cleaner motor by means of sound analysis [ J ]. Jour- nal of Sound and Vibration,2004,276 (3/4/5) :781 -806.
  • 5Kotani M, Ueda Y, Matsumoto H, et al. Acoustic diagnosis for blower with wavelet transform and neural networks [ C ]// Proceedings of IEEE International Conference on Neural Net- works. 1995:718 - 723.
  • 6Lin J. Feature extraction of machine sound using wavelet and its application in fault diagnosis[ J]. NDT & E International, 2001,34( 1 ) :25 -30.
  • 7Li W D,Parkin R M, Coy J, et al. Acoustic based condition monitoring of a diesel engine using self-organizing map net- works [ J ]. Applied Acoustics,2002,63 (7) : 699 - 711.
  • 8Hessel G,Schmitt W,Weiss F P. A neural-network approach for acoustic leak monitoring in pressurized plants with com-plicated topologies [ J ]. Control Engineering Practice, 1996,4 (9) :1271 - 1276.
  • 9Shlens J. A tutorial on principal component analysis [ EB/ OL]. 2014-04-03. arxiv, org/abs/1404.1100.
  • 10Tax D M J, Duin R P W. Data domin description using sup- port vectors [ C]//Proceedings of European Symposium on Artificial Neural Networks. 1999:251 -256.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部