期刊文献+

基于水下图像小波变换的图像阈值去噪方法的研究 被引量:8

Study on Image Threshold De-noising Based on Underwater Image Wavelet Transform
下载PDF
导出
摘要 水下图像污染过程和机理十分复杂,不同的水下环境噪声也不尽相同。在此尝试用小波阈值去噪方法对水下图像进行去噪,力求改善图像质量。小波阈值去噪是信号处理中一种重要的去噪方法,针对常用硬阈值函数不连续的特点以及软阈值函数存在偏差的问题,提出了一种新的阈值处理方法。在Matlab中的仿真试验结果表明,新阈值方法的去噪效果无论在视觉效果上,还是在信噪比上都优于传统的硬阈值和软阈值,充分体现出小波阈值去噪方法的优越性。 The pollution process and mechanism of underwater images is very complex.The noise under different underwater environment is not the same.The wavelet threshold de-noising method is used to denoise from underwater images and to improve the image quality.The wavelet threshold de-noising is an important de-noising method in the signal processing.A new threshold processing methom based on the wavelet threshold de-noising is presented.The method can overcome the shortcomings of the hard threshold with discontinuous functions and solve the problem of the bias in soft threshold functions.The de-noising effect of the new threshold method is better than the traditional hard threshold or soft threshold method in visual effect.The results of simulation with Matlab show that the new threshold function is effective,and can embody the advantages of the wavelet threshold de-noising method more fully.
出处 《现代电子技术》 2011年第15期79-81,84,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(60772058)
关键词 小波变换 阈值去噪 水下图像 峰值信噪比 wavelet transform threshold de-noising underwater image peak signal to noise ratio
  • 相关文献

参考文献8

二级参考文献34

共引文献54

同被引文献43

  • 1郭代飞,高振明,张坚强.利用小波门限法进行信号去噪[J].山东大学学报(理学版),2001,36(3):306-311. 被引量:22
  • 2郑冰,孙骁禾,粟京.一种水下激光成像的新方法[J].中国海洋大学学报(自然科学版),2006,36(1):119-122. 被引量:12
  • 3金观昌,孟利波,陈俊达,马少鹏,张军.数字散斑相关技术进展及应用[J].实验力学,2006,21(6):689-702. 被引量:88
  • 4陈怀琛.MATLAB及在电子信息课程中的应用[M].北京:电子工业出版社,2006.
  • 5Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 6HUANG H C. LEE T C M. Data adaptive median filters for sig- nal and image denoising using a generalized SURE criterion [J]. IEEE Image Processing Letters, 2006, 13(9): 561-564.
  • 7MALLAT S, HWANG W L. Singularity detection and processing with wavelets [J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
  • 8BAE E, SHI J, TAI X C. Graph cuts for curvature based image denoising [J]. IEEE Transactions on Image processing, 2011, 20(5): 1199-1210.
  • 9EFROS A A, LEUNG T K. Texture synthesis by non-parametric sampling [C]// Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999, 2: 1033-1038.
  • 10BUADES A,COLL B,MOREL J M. A review of image denoising algorithms [J]. Muhiscale Model Simulation, 2005, 4(2) : 490- 530.

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部