期刊文献+

L阶Markov信号的稀疏表示

Sparse Representation for L-order Markov Signals
下载PDF
导出
摘要 在现实生活中,很多信号(比如语音信号)都具有有色性,即信号相邻采样点之间具有统计相关性,通常可采用L阶Markov过程进行较好的描述,然而已有的稀疏表示算法并没有充分考虑到这种统计特性。因此,针对L阶Markov信号,采用l(p≤1)-范数的广义平均值作为稀疏度量,并提出了基于重叠采样的稀疏表示算法。仿真结果表明,相比现有的线性规划稀疏表示方法、最短路径法和FOCUSS法,新算法的精度更高。 In real life,many signals are non-white with temporal structure such as speech signals.These signals usually can be modeled as an L-order Markov process.However,the existing sparse representation methods ignore the property of these signals.The general mean of l(p≤1)-norm is adopted as the sparse measure and a sparse representation algorithm based on overlapping sampling is proposed for L-order Markov signals.The simulation shows that the proposed algorithm can achieve more accurate results compared with the existing methods such as linear programming,shortest path decomposition,and standard FOCUSS algorithm.
作者 吕俊
机构地区 广东工业大学
出处 《现代电子技术》 2011年第15期97-100,共4页 Modern Electronics Technique
关键词 稀疏表示 L阶Markov过程 重叠采样 FOCUSS sparse representation L-order Markov process overlapping sampling FOCUSS
  • 相关文献

参考文献19

  • 1RAO B D. Signal processing with the sparseness constraint [C]// Proceedings of the ICASSP. Seattle, WA: Is. n. ], 1998:1861 1864.
  • 2OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natu- ral images [J]. Nature, 1996, 381: 607-609.
  • 3CICHOCKI A, AMARI S. Adaptive blind signal and image processing., learning algorithms and applications [M]. New York= John Wiley Sons, 2003.
  • 4ZIBULEVSKY M, PEARLMUTTER B. Blind source sepa ration by sparse decomposition in a signal dictionary[J]. Neural Computation, 2001, 13: 863-882.
  • 5CHEN S, DONOHO D L, SAUNDERS M A. Atomic de- composition by basis pursuit [J]. SIAM J. Sci. Comput. , 1998, 20, (1): 33-61.
  • 6DONOHO D , ELAD M. Maximal sparsity representation via Ii minimization [J]. Proc. National Academy Science, 2003, 100: 2197-2202.
  • 7LI Y Q, CICHOCKI A, AMARI S. Analysis of sparse rep- resentation and blind source separation[J]. Neural Compu-ration, 2004, 16: 1193-1234.
  • 8TAKIGAWA I, KUDO M, TOYAMA J. Performance a- nalysis of Minimum l-norm solutions for underdetermined source separation [J]. IEEE Trans. Signal Processing, 2004, 52(3): 582-591.
  • 9LI Y Q, AMARI S, CICHOCKI A, et al., Underdeter mined blind source separation based on sparse representation[J]. IEEE Trans. on Signal Processing, 2006, 54 (2).. 423-437.
  • 10BOFILL P, ZIBULEVSKY M. Underdetermined blind source separation using sparse representations[J] Signal Processing, 2001, 81: 2353-2362.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部