摘要
在现实生活中,很多信号(比如语音信号)都具有有色性,即信号相邻采样点之间具有统计相关性,通常可采用L阶Markov过程进行较好的描述,然而已有的稀疏表示算法并没有充分考虑到这种统计特性。因此,针对L阶Markov信号,采用l(p≤1)-范数的广义平均值作为稀疏度量,并提出了基于重叠采样的稀疏表示算法。仿真结果表明,相比现有的线性规划稀疏表示方法、最短路径法和FOCUSS法,新算法的精度更高。
In real life,many signals are non-white with temporal structure such as speech signals.These signals usually can be modeled as an L-order Markov process.However,the existing sparse representation methods ignore the property of these signals.The general mean of l(p≤1)-norm is adopted as the sparse measure and a sparse representation algorithm based on overlapping sampling is proposed for L-order Markov signals.The simulation shows that the proposed algorithm can achieve more accurate results compared with the existing methods such as linear programming,shortest path decomposition,and standard FOCUSS algorithm.
出处
《现代电子技术》
2011年第15期97-100,共4页
Modern Electronics Technique