期刊文献+

多姿态眼球中的瞳孔定位算法 被引量:7

Pupil Localization for Multi-view Eyeballs
下载PDF
导出
摘要 针对当前基于普通光源的瞳孔定位算法主要适用于眼睛开度较大、眼球较完整的问题,提出一种适用于多姿态眼球的瞳孔定位算法.该算法在采用Adaboost进行人脸检测后,利用多分辨率ASM技术进行面部关键点分析并实现眼睛定位;在眼睛定位的基础上,利用滑动窗口技术遍历整个眼部图像,并根据眼睛的灰度分布特点采用2级灰度信息分析的方法进行瞳孔定位.实验结果表明:在光线分布比较合理的情况下,采用文中算法不仅可以在眼睛开度正常、瞳孔较完整的情况下进行瞳孔定位,当瞳孔位于眼睛边缘、眼睛开度较小等瞳孔不完整的情况下也具有良好的定位效果. This paper describes a pupil localization approach that is capable of processing multi-view eyeball under natural light environment. In the proposed method, the Adaboost algorithm is used to detect human face and the multi-resolution ASM method is used to locate the facial feature points. Then eye images can be obtained by four eye's feature points. After the location of the eyes, a sliding window technique is employed to analyze the eyes' gray information distribution. The local area covered by the sliding window with lowest gray intensity is assumed to be the pupil candidate area. Finally, a similar local area analysis technique is developed to adjust the position of the pupil candidate area. Experiments on multi-view eyeballs show that the proposed method can effectively localize the pupil no matter the pupil is complete or incomplete.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第8期1427-1432,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2007AA01Z160)
关键词 多姿态眼球 瞳孔定位 主动形状模型 灰度分布 multi-view eyeball pupil localization active shape model gray distribution
  • 相关文献

参考文献12

  • 1Baron-Cohen S. How to build a baby that can read minds: cognitive mechanisms in mind reading [J]. Current Psychology of Cognition, 1994, 13(5) : 513-552.
  • 2Villanueva A, Cabeza R. A novel gaze estimation system with one calibration point [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetics, 2008, 38(4): 1123-1138.
  • 3Ko Y J, Lee E C, Park K R. A robust gaze detection method by compensating for facial movements based on corneal specularities [J]. Pattern Recognition Letters, 2008, 29(10) : 1474-1485.
  • 4Bhatia N, Chhabra M. Improved Hough transform for fast iris detection [C] //Proceedings of the 2nd International Conference on Signal Processing Systems. Los Alamitos: IEEE Computer Society Press, 2010:172-176.
  • 5Perez C A, Aravena C M, Vallejos J I, et al. Face and iris localization using templates designed by particle swarm optimization [J].Pattern Recognition Letters, 2010, 31(9), 857-868.
  • 6Moriyama T, Kanade T, Xiao Jing, et al. Meticulously detailed eye region model and its application to analysis of facial images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 738-752.
  • 7杜志军,王阳生.正面人脸图像中眼睛的定位算法[J].计算机辅助设计与图形学学报,2009,21(6):763-769. 被引量:6
  • 8张勇忠,刘富,孙令明,唐超.基于对称变换的瞳孔定位方法[J].吉林大学学报(信息科学版),2009,27(3):268-272. 被引量:7
  • 9Torricelli D, Conforto S, Schmid M, et al. A neural-based remote eye gaze tracker under natural head motion [J]. Computer Methods and Programs in Biomedicine, 2008, 92 (1) : 66-78.
  • 10Cootes T F, Hill A, Taylor C J, et al. The use of active shape models for locating structures in medical images [J].hnage and Vision Computing, 1994, 12(6): 355-366.

二级参考文献21

  • 1宋加涛,刘济林,池哲儒,王蔚.人脸正面图像中眼睛的精确定位[J].计算机辅助设计与图形学学报,2005,17(3):540-545. 被引量:13
  • 2石跃祥,蔡自兴,B.Benhabib,王学武.基于眼睛梯度对特征的人脸检测方法[J].计算机工程与应用,2005,41(26):27-29. 被引量:4
  • 3唐旭晟,欧宗瑛,苏铁明,赵鹏飞.复杂背景下人眼的快速定位[J].计算机辅助设计与图形学学报,2006,18(10):1535-1540. 被引量:14
  • 4DENGAND J, LAI F. Region-Based Template Deformation and Masking for Eye-Feature Extraction and Description [ J ]. Pattern Recognition, 1997, 30 (3): 403-419.
  • 5XIE X, SUDHAKAR R, ZHUANG H. On Improving Eye Feature Extraction Using Deformable Templates [ J ]. Pattern Recognition, 1994, 27 (6): 791-799.
  • 6HUANG Chung-lin, CHEN Ching-wen. Human Facial Feature Extraction for Face Inter-Pretation and Recognition [ J]. Pattern Recognition, 1992, 25 (12) : 1435-1444.
  • 7XU Zhi-fei, SHI Peng-fei. A Robust and Accurate Method for Pupil Features Extra [ C] //18th International Conference on Pattern Recognition. Hong Kong: IEEE Computer Society, 2006: 437-440.
  • 8JENKINS C, WAN J, HOLDEN E J, et al. Application of Radial Symmetry for Caldera Detection [ C ] //Digital Image Computing: Techniques and Applications. Canberra: ACT, 2008 : 142-147.
  • 9CHOW G, LI Xiao-bo. Towards a System for Automatic Facial Feature Detection [J]. Pattern Recognition, 1993, 26 (12) : 1739-1755.
  • 10LONG Xin-dian, TONGUZ O K, KIDERNAN A. Real Time Pupil Size Monitoring as a Screening Method for Diabetic Retinopathy [ C] //IEEE Biomedical Circuits and Systems Conference. Montreal, Que: IEEE, 2007: 215-218.

共引文献11

同被引文献29

  • 1谭华春,章毓晋,李睿.基于角点特征的眼睛轮廓提取[J].中国图象图形学报,2007,12(7):1224-1229. 被引量:2
  • 2Zhao Zheng, Fu Shengbo, Wang Yuchuan. Eye tracking based on the template matching and the pyramidal lucas-Kanade algorithm. Inter- national Conference on Computer Science & Service System (CSSS), IEEE, 2012:2277-2280.
  • 3Yanok, Lshiharak, Btakikawa. Detection of eye blinking from video camera with dynamic ROI fixation. Systems, Man, and Cybernetics, IEEE SblC99 Conference Proceedings, IEEE, 1999 ; 6 : 335-339.
  • 4Mehrtlbeoglu M, Ha Thi Bui, McLauchlan L. Real-time iris tracking with a smart camera. Electronic Imaging. Intemational Society for Optics and Photonics, 2011 ; 787104 : 1--9.
  • 5Martinez F, Carbone A, Pissaloux E. Radial symmetry guided parti- cle filter for robust iris tracking. Computer Analysis of Images and Patterns. Springer Berlin Heidelberg, 2011 : 531-539.
  • 6Bradski G R. Computer vision face tracking for use in a perceptual user interface. Proceedings of IEEE Work-shop Applications of Com- puter Vision, Princeton, NJ:IEEE,1998:214-219.
  • 7Violap, Jonesm. Robust real-time face detection. International Jour- nal of Computer Vision, 2004 ; 57 (2) : 137-154.
  • 8Lienhartr, Kuranova, Pisarevskyv. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. Lecture Notes in Computer Science, 2002 ; 2781 (2003) :297-304.
  • 9Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003 ; 25(5) :564-577.
  • 10吕哲,王福利,常玉清.一种改进的Canny边缘检测算法[J].东北大学学报(自然科学版),2007,28(12):1681-1684. 被引量:57

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部