期刊文献+

采用同步分析的零延迟GRLS通信机制

Synchronous Mechanisms Based Zero-Latency GRLS Communication Scheme
下载PDF
导出
摘要 全局异步局部同步(GALS)与频率调整相结合能够有效地降低动态功耗.针对频率切换以及跨时钟域传输开销会损害芯片性能的问题,提出一种基于计数器的分频方法.该方法根据计数结果生成分频后的时钟沿,并在此基础上建立了一个全局比例同步局部同步(GRLS)的通信机制.GRLS利用2个时钟的频率及相位关系实现了零延迟的跨时钟域传输,并引进同步电路分析方法来保证其正确性和健壮性;GRLS不会对原有的时钟设计做任何改变,频率切换可以在一个周期内完成,且面积功耗开销可以忽略不计.最后通过基于GRLS建立的存储系统证明了该机制的高效性.目前GRLS已经成功地应用于一款商业SoC. Globally asynchronous locally synchronous (GALS) combined with frequency scaling has become a popular and effective technique in chip power reduction. However, frequency switching penalty and crossing domain communication may be harmful to the performance of design. This paper introduces a counter based frequency scaling method, in which the new clock edges are generated according to the results of the counter. Based on this method a globally ratiochronous locally synchronous (GRLS) scheme is proposed. GRLS is targeting at communication between two clock domains whose frequencies are ratio-related. By use of the relationship on frequency and phase, synchronous mechanisms are employed to maintain the correctness and robustness of the scheme. ORLS achieves a zero-latency crossing-domain communication. Frequency switching can be finished in a cycle and the power and area penalties can be neglected. Experimental results of a memory system built with GRLS demonstrated its efficiency, and GRLS has been successfully applied in a commercial SoC.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第8期1455-1462,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2005CB321600) 国家"八六三"高技术研究发展计划(2009AA01Z125) 国家自然科学基金(60803029 60801045)
关键词 全局异步局部同步 全局比例同步局部同步 频率比例 零延迟 同步机制 globally asynchronous locally synchronous globally ratiochronous locally synchronous frequency ratio zero-latency synchronous mechanism
  • 相关文献

参考文献16

  • 1Teehan P, Greenstreet M, Lemieux G. A survey and taxonomy of GALS design styles [J].IEEE Design & Test of Computers, 2007, 24(5): 418-428.
  • 2王永文,张民选.时钟分布的功耗估算与优化[C]//第八届计算机工程与工艺全国学术年会.北京:中国计算机学会,2003:318-323.
  • 3徐阳扬,周端,杨银堂,王青松,廖峰.非对称GALS系统异步接口设计[J].西安电子科技大学学报,2007,34(2):294-297. 被引量:7
  • 4林世俊,张凡,金德鹏,曾烈光.分布式同步的GALS片上网络及其接口设计[J].清华大学学报(自然科学版),2008,48(1):32-35. 被引量:6
  • 5Sarmenta L F G, Pratt G A, Ward S A. Rational clocking [C] //Proceedings of the IEEE International Conference on Computer Design: VLSI in Computers and Processors. Los Alamitos.. IEEE Computer Society Press, 1995:271-278.
  • 6Frank U, Kapshitz T, Ginosar for periodic clock domains [J] Design, 2006, 28(2) : 171-186.
  • 7R. A predictive synchronizer Formal Methods in System Mekie J, Chakraborty S, Sharma D K, et al. Interface design for rationally clocked GALS systems [C]//Proceedings of the 12th IEEE International Symposium on Asynchronous Cirenits and Systems. Los Alamitos: IEEE Computer Society Press, 2006:1-12.
  • 8Chabloz J M, Hemani A. A flexible communication scheme for rationally related clock frequencies [C] //Proceedings of the IEEE International Conference on Computer Design. Los Alamitos: IEEE Computer Society Press, 2009:109-116.
  • 9Chabloz J M, Hemani A. Distributed DVFS using rationally-related frequencies and discrete voltage levels [C]// Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design. Near York: ACM Press, 2010: 247-252.
  • 10Liehtenau C, Ringler M I, Pfluger T, et al. PowerTune= advanced frequency and power scaling on 64b PowerPC microprocessor [C] //Proceedings of IEEE International Solid-State Circuits Conference. Los Alamitos: IEEE Computer Society Press, 2004:356-357.

二级参考文献11

  • 1Ivanov A, De Micheli G. The network-on-chip paradigm in practice and research [J]. Design & Test of Computers, 2005, 22(5): 399-403.
  • 2Saleh R. An approach that will NoC your SoCs off![J]. Design & Test of Computers, 2005, 22(5) : 488 - 488.
  • 3Pande P P, Grecu C, Ivanov A, et al. Design, synthesis, and test of networks on chips[J]. Design & Test of Computers, 2005, 22(5) : 404 - 413.
  • 4Gupta R. On-chip networks [J].Design & Test of Computers, 2005, 22(5) : 393 - 393.
  • 5Rostislav D, Vishnyakov V, Friedman E, et al. An asynchronous router for multiple service levels networks on chip [C]// Asynchronous Circuits and Systems. New York City USA: IEEE Press, 2005:44-53.
  • 6Najibi M, Saleh K, Naderi M, et al. Prototyping globally asynchronous locally synchronous circuits on commercial synchronous FPGAs [C]// Rapid System Prototyping. Montreal Canada: IEEE Press, 2005:63-69.
  • 7Muttersbach J, Villiger T, Fichtner W. Practical design of globally-asynchronous locally-synchronous systems [C]// Advanced Research in Asynchronous Circuits and Systems. Eilat, Israel: IEEE Press, 2000:52-59.
  • 8Moore S W, Taylor G S, Cunningham P A, et al. Self calibrating clocks for globally asynchronous, locally synchronous systems [C]// Computer Design Proceedings. Los Alamitos: IEEE CS Press, 2000:73 - 78.
  • 9Villiger T, Kaslin H, Gurkaynak F K, et al. Self-timed ring for globally-asynchronous locally-synchronous systems [C]// Asynchronous Circuits and Systems. Vancouver BC, Canada: IEEE Press, 2003:141 - 150.
  • 10张弘,杨莉,李玉山.通用乘法器IP核可测性设计研究[J].西安电子科技大学学报,2003,30(3):349-352. 被引量:4

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部