期刊文献+

具线性收获率的时滞捕食系统的稳定性与Hopf分岔 被引量:2

Stability and Hopf bifurcation of a delayed prey system with linear harvesting rate
下载PDF
导出
摘要 研究了一类具有线性收获率和时滞的捕食-被捕食模型,通过分析该系统在正平衡点的线性化方程,得到了正平衡点局部稳定的条件,进而得到出现Hopf分岔的条件。通过应用规范型理论和中心流形定理,得到了确定Hopf分岔方向和分岔周期解的稳定性计算公式。最后,利用数值模拟验证了研究结果。 A delayed predator-prey model with linear harvesting rate is proposed.By analyzing the linearizing system at the positive equilibrium,the local stability of positive equilibrium as well as the existence of Hopf bifurcation are studied.Based on the normal form theory and center manifold theorem for Hopf bifurcation,the direction of Hopf bifurcation is determined and the stability of bifurcating periodic solutions is obtained.Finally,numerical simulations are carried out to illustrate the theoretical results.
出处 《桂林电子科技大学学报》 2011年第4期329-333,337,共6页 Journal of Guilin University of Electronic Technology
基金 广西自然科学基金(2010GXNSFC013012)
关键词 捕食系统 HOPF分岔 时滞 线性收获 predator-prey system Hopf bifurcation delay linear harvesting
  • 相关文献

参考文献10

  • 1MARTIN A, RUAN S. Predator-prey models with delay and prey harvesting[J]. J Math Biol,2001,43(1)..247-267.
  • 2XIA J, LIU Z. The effects of harvesting and time delay on predator-prey system with Holling type II functional response [J]. SIAM J Appl Math, 2009,70(4) : 1178-1200.
  • 3XIAO D, Li W, HAN M. Dynamics in a ratio-dependent predstor-prey model with predator harvesting [J]. J Math Appl, 2006, 324(1) :14- 29.
  • 4饶凤,王玮明,李志斌.一类含时滞与收获的捕食系统的Hopf分支分析(英文)[J].华东师范大学学报(自然科学版),2010(6):186-198. 被引量:2
  • 5田晓红,徐瑞,王丽丽.一类具时滞和收获的捕食模型的稳定性与Hopf分支[J].工程数学学报,2010,27(4):684-692. 被引量:6
  • 6XIAO M, CAO J. Hopf bifureztion and non-hyperbolic equilibrium in a ratio dependent predator-prey model with linear harvesting rate anal ysis and computation[J]. Mathematical and Computer Modelling, 2009,50(3):360-379.
  • 7CANAN C. Hopf bifurcation of a ratio-dependent predator-prey system with time delay[J]. Chaos, Solitons and Fractals, 2009, 42(3)I 1474-1484.
  • 8YAN X, ZHANG C. Hopf bifurcation in a delayed Lokta-Volterra predator-prey system[J]. Nonlinear Analysis.. Real World Applications, 2008,9(1) : 114-127.
  • 9GAN R, MA Z. Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delay[J]. Journal of Computational and Applied Mathematics, 2009,230(1) :187-203.
  • 10HASSAID B, KAZARINOEF N D, WAN Y H. Theory and Application of Hopf Bifurcation [M]. Cambridge: Cambridge Univ Press, 1981.

二级参考文献7

共引文献5

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部