期刊文献+

广义Wolfe线搜索下共轭梯度法的全局收敛性 被引量:3

Global convergence of conjugate gradient method with general wolfe line search
下载PDF
导出
摘要 共轭梯度法是求解大规模约束问题的有效算法,不同的参数选取构成不同的共轭梯度法。通过研究一个新的求解无约束最优化问题的共轭梯度法,证明该公式在广义Wolfe线搜索下是具有充分下降性,并且是全局收敛的。 In the ordinary circumstances,conjugate gradient method is the effective algorithm which solves the large-scale restraint question.Different parameter selected constructs different conjugate gradient method.A novel conjugate gradient method for solving nonlinear unconstrained optimization problem is studied,the sufficient descent property and global convergence of the new conjugate gradient method with general Wolfe line search are proved.
出处 《桂林电子科技大学学报》 2011年第4期342-344,共3页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11061011) 广西高校优秀人才资助项目([2009]156)
关键词 共轭梯度法 充分下降性 广义Wolfe准则 全局收敛性 conjugate gradient method sufficient descent property general wolfe line search global convergence
  • 相关文献

参考文献9

  • 1ANDREI N. A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization[J]. 2007,20(6):645- 650.
  • 2BIGIN E, MART' INEZ J M. A spectral conjugate gradient method for unconstrained optimization[J]. Appl Math Optim, 2001,43 : 117-128.
  • 3SHANNO D F. Conjugate gradient methods with inexact searches[J]. Math Oper Res, 1978,3 : 244-256.
  • 4DAI Y H, LIAO L Z, New conjugate conditions and related nonlinear conjugate gradient methods[J]. Appl Math Optim, 2001(2) :87-101.
  • 5PERRY J M. A class of conjugate gradient algorithms with a two step variable metric memory[D]. Northwestern University:Center for Mathematical Studies in Economics and Management Science, 1977.
  • 6BONGARTZ I, CONN A R, GOULD N I M,et a|. CUTE: Constrained and unconstrained testing environments[J] ACM Trans Math Software, 1995,21 : 123-160.
  • 7WOLFE P, Convergence conditions for ascent methods[M]. SIAM Rev, 1969,11 : 226-235.
  • 8FLETCHER R, REEVES C M, Function minimization by conjugate gradients[M]. Comput J, 1964,7: 149-154.
  • 9POWELL M J D, Restart procedures for the conjugate gradienL method[J]. Math Program, 1977,12 : 241-254.

同被引文献10

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部