期刊文献+

基于3维图像增强的肺结节识别 被引量:3

Recognition of pulmonary nodules based on 3D image enhancement
原文传递
导出
摘要 孤立性肺结节的检测是肺癌早期诊断的关键。针对传统点增强滤波器虽然对结节增强具有很好的敏感性,但是却产生很多假阳性区域的问题,提出一种通过计算3维增强密度指数和判别规则来识别肺结节的方法。首先采用自适应双边滤波器对CT图像序列进行降噪和平滑处理;然后计算对应的Hessian矩阵及其特征值得到预增强系数,并获得感兴趣体区域,通过对预增强系数的分析来构造3维增强密度指数;最后应用判别规则对感兴趣体进行识别。针对两个肺部CT图像数据集对该方法进行了测试,结果表明,在识别孤立性肺结节方面该方法是有效的。 The detection of solitary pulmonary nodules (SPN) is proven to be of critical importance in early-stage lung cancer diagnosis. Aiming at reducing the false positive regions caused by the dot enhancement filter which is sensitive to the lung nodules, a new recognition method based on calculation of three-dimensional (3D) enhancement density index and decision rule is proposed. An adaptive bilateral filter is applied to reduce the noisy and smooth CT image sequences. Then, the pre-enhancement coefficients and volume of interest (VOI) are obtained by computing the Hessian matrix and corresponding eigenvalues. After analyzing the distribution of pre-enhaneement coefficients, 3D enhancement density index is constructed. Finally, a decision rule is adopted to identify nodule candidates. The proposed method is tested on two lung CT image sets. The experimental results illustrate the efficiency of the proposed algorithm.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第8期1402-1407,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60671050 61001047)
关键词 点增强 自适应双边滤波 HESSIAN矩阵 增强密度指数 dot enhancement adaptive bilateral filter Hessian matrix enhancement density index
  • 相关文献

参考文献10

  • 1Raymond E L, Robert T O, Ted G. Clinical Oncology [ M ]. 2st ed. Atlanta; USA:Emily Pualwan, 2001:269-296.
  • 2Shigemoto K, Takizawa H, Yamamoto S, et al. Efficient recognition method for lung nodule shadows in X-ray CT images using 3-D object models and template matching techniques [ J ]. Medical Imaging Technology, 2003, 21 (2) :147-156.
  • 3Lee Y, Hara T, Fujita H, et al. Automated detection of pulmonary nodules in helical CT images based on an improved templatematching technique [ J ]. IEEE Trans. Med. Imaging,2001, 20(7) :595-604.
  • 4Yamomoto M, Ishida T, Kawashita I, et al. Development of computer-aided diagnostic system for detection of lung nodules in threedimensional computed tomography images [ J ]. Radiological Technology, 2006, 62(4) :555-564.
  • 5Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans [J]. ned. Phys., 2003, 30(8) :2040-2051.
  • 6Samuel G, ArmatoⅢ, Geoffrey M, et al. Lung image database consortium-developing a resource for the medical imaging research community[ J]. Radiology, 2004, 232(9) :739-748.
  • 7Paik S, Beaulieu F, Rubin D, et al. Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT [ J ]. IEEE Trans. Med.Imaging, 2004, 23(6) :661-675.
  • 8Zhao B, Gordon G, MicheUe G, et al. Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm [ J ]. Journal of Applied Clinical Medical Physics, 2003, 4(3) :248-260.
  • 9Hara T, Hirose M, Zhou X, et al. Nodule detection in 3D chest CT images using 2nd order autoeorrelation features [ C ]// Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. Piscataway, USA: IEEE, 2005:6247-6249.
  • 10Osmana O, Ozekesa S, Osman N. Lung nodule diagnosis using 3D template matching[ J]. Computers in Biology and Medicine, 2007, 37 (8) :1167-1172.

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部