期刊文献+

带2^(1/2)细分结构的四边形化

Quadriangulation with 2^(1/2)-subdivision structure
原文传递
导出
摘要 在Morse函数理论的基础上,提出一种新的从三角网格中建立四边形网格多分辨率表示的方法.先由人工指定或从拉普拉斯矩阵的特征函数中提取临界点,计算带约束的拉普拉斯方程得到光滑的Morse函数.函数的临界点(极大、极小和鞍点)有规律地分布在模型表面,在三角网格表面梯度场的引导下,生成临界点间流线,得到临界点间的拓扑关系.通过临界点交换规则,同样是采用流线的方法,得到更精细的四边形网格。最终可实现无需参数化而仅用流线方法来建立不同多分辨率表示的四边形网格。 Based on the Morse theory, a novel approach to create quad-mesh multiresolution from triangular mesh models is proposed. A smooth Morse function on a given triangular mesh is firstly defined as the solution of a Laplacian equation with constraints in which critical points are either specified by user or exacted from an eigenfunction of the Laplaeian matrix of the mesh. As critical point layout has been carefully treated, maximum, minimum and saddle points of the function will automatically possess of structure of a quad mesh whose connectivity is then produced by tracing the stream lines of the function guided under the gradient field of the function. A critical point exchange rule is employed to generate the structure of the next finer quad mesh whose connectivity is finally also generated through stream line tracing. Parameterization is not required in the process as all resolution levels are created using the stream lines method.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第8期1541-1551,共11页 Journal of Image and Graphics
基金 国家自然科学基金项目(60973084) 国家支撑计划项目(X2JS-B1080010) 中央高校基本科研业务费专项资金项目(2009zz0016) 华南理工大学自然科学青年基金项目
关键词 四边形重新网格化 多分辨率表示 MORSE理论 拉普拉斯场 quad-remeshing multiresolution Morse theory Laplacian field
  • 相关文献

参考文献42

  • 1Shewchuk J R. What is a good linear element? Interpolation, conditioning, and quality measures [ C ]]Proceedings of 1 1th International Meshing Roundtable. New York: Sandia National Laboratories, 2002 : 115-126.
  • 2Turk G. Retiling polygonal surfaces [ J]. Computer Graphics, 1992, 26(2) : 55-64.
  • 3彭莉,李桂清,熊赟晖,戴专.按曲率选取基点的多分辨率表示重构算法[J].计算机辅助设计与图形学学报,2008,20(6):700-706. 被引量:5
  • 4Alliez P, Ucelli G, Gotsman C, et al. Recent advances in remeshing of surfaces [ J ]. Shape Analysis and Structuring, 2008, 53-82.
  • 5Alliez P, Verdiere E C de, Devillers O, et al. Isotropic surface remeshing[ C ]// Proceedings of Shape Modeling International. Washington, DC,USA: IEEE Computer Society, 2003:49-58.
  • 6Xu G, Gortler S, Hoppe H. Geometry images [ J]. ACM TOG, 2002, 21(3) : 355-361.
  • 7Sander P, Wood Z, Gortler S, et al. Multi-chart geometry images [ C ]// Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. New York, USA: ACM Press, 2003:146-155.
  • 8Lai Y K, Hu S M,Martin R R. Surface mosaics[J]. The Visual Computer: International Journal of Computer Graphics, 2006, 22(9-10) :604-611.
  • 9Blacker T, Stephenson M. Paving: A new'approach to automated quadrilateral mesh generation [ J ]. Numerical Methods in Engineering, 1991,32: 811-847.
  • 10Owen S J, Staten M L, Canann S A, et al. Advancing front quadrilateral meshing using triangle transformations [ C ]// Proceedings of the 7th International Meshing Roundtable. Dearborn, MI: Sandia National Labs,1998: 409-428.

二级参考文献17

  • 1Eck M, DeRose T, Duchamp T, et al. Multiresolution analysis of arbitrary meshes [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 1995:173-182
  • 2Hoppe H. Progressive meshes[C] //Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New York, 1996:99-108
  • 3Atlan S, Garland M. Interactive multiresolution editing and display of large terrains [J]. Computer Graphics Forum, 2006, 25(2): 211-223
  • 4Kobbelt L, Schroder P. A multiresolution framework for variational subdivision [J]. ACM Transactions on Graphics, 1998, 17(4): 209-237
  • 5Lee A, Moreton H, Hoppe H. Displaced subdivision surfaces [C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New York, 2000:85-94
  • 6Guskov I, Vidimce K, Sweldens W, et al. Normal meshes [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New Orleans, 2000: 96-102
  • 7Loop C T. Smooth subdivision surfaces based on triangles [D]. Utah: University of Utah, 1987
  • 8Finkelstein A, Salesin D H. Multiresolution curves [C] // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, 1994.. 261-268
  • 9Lounsbery J M. Multiresolution analysis for surfaces of arbitrary topological type [D]. Washington D C: University of Washington, 1994
  • 10Lounsbery M, DeRose T D, Warren J. Multiresolution analysis for surfaces of arbitrary topological type[J]. Transactions on Graphics, 1997, 16(1): 34-73

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部