期刊文献+

Cu材料激光表面强化研究 被引量:8

Investigation on Laser Surface Modification of Copper
原文传递
导出
摘要 采用激光技术对Cu基材进行表面强化处理。使用扫描电镜(SEM)、电子能谱计(EDS)和X射线衍射仪(XRD)对强化表面进行显微组织和物相分析,并测试了样品的显微硬度、耐磨性能和导电性能。结果表明,激光强化层无裂纹,组织细小均匀、呈快速凝固特征,强化层具有较高的硬度(平均硬度为625HV0.1)和良好的耐磨性,其磨损失重仅为纯Cu基材的1/5,而激光表面强化使导电性略微降低。激光表面强化层硬度和耐磨性的提高可归因于颗粒强化、细晶强化和固溶强化的共同作用,而导电性的降低程度主要受稀释率的影响。 A good finish layer which is free from surface crack is successfully fabricated by laser surface modification on copper. The microstructure, phase structure and tribological properties are investigated by means of scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS) and X-ray diffractometer (XRD), as well as dry sliding wear test. The hardness and electrical conductivity tests are also carried out. The results indicate that the modified layer is composed of a fine and homogeneous microstructure, which has the characteristic of rapid solidification. The modified layer has a high average hardness of 625 HV0.1 and better wear resistance. The wear mass loss of the layer is only one fifth of that of pure copper. Additionally, the electrical conductivity is slightly lowered by laser surface modification. The improvement of hardness and wear resistance is attributed to refinement and solid solution strengthening in the modified layer. The level of the electrical conductivity depends on the dilution.
出处 《中国激光》 EI CAS CSCD 北大核心 2011年第8期65-69,共5页 Chinese Journal of Lasers
基金 河南省教育厅自然科学研究计划(2011B140022)资助课题
关键词 激光技术 激光表面强化 纯铜 耐磨性 导电性 laser technique laser surface modification pure copper wear resistance electrical conductivity
  • 相关文献

参考文献24

  • 1J. R. Davis. ASM Specialty Handbook: Copper and Copper Alloys [M]. Materials Park: ASM International, 2001. 153-168.
  • 2K. P. Cooper, H. N. Jones, R. A. Meger. Analysis of railgun barrel material [J]. IEEE Transactions on Magnetics, 2007, 43 (1) :120-125.
  • 3G. L. Jackson, L. K. Farris, M. M. Tower. Electromagnetic railgun extended life bore material tests results [J]. IEEE Transactions on Magnetics, 1986, 22(6) :1542-1545.
  • 4S. N. Rosenwasser. Recent advances in large railgun structures and materials technology [J]. IEEE Transactions on Magnetics, 1991, 17(1):444-451.
  • 5D. P. Bauer, J. M. Juston. Rapid testing for multishot railgun bore life [J]. IEEE Transactions on Magnetics, 1997, 33 (1) : 390-394.
  • 6R. M. Gee, C. Persad. The response of different copper alloys as rail contacts at the breech of an electromagnetic launcher [J]. IEEE Transactions on Magnetics, 2001, 37(1);263-269.
  • 7R. A. Meger, K. Cooper, H. Jones et al.. Analysis of rail surfaces from a multishot railgun [J]. IEEE Transactions on Magnetics, 2005, 41(1) :211-213.
  • 8A. Bell, H. A. Davis. Solid solubility extension in Cu-Vand Cu Cr alloys produced by chill block melt spinning [J]. Materials Science and Engineering A, 1997, 226-228:1039-1041.
  • 9F. Lopez, J. Reyes, B. Campillo et aJ.. Rapid solidification of copper alloys with high strength and high conductivity [J]. Journal of Materials Engineering and Performance, 1997, 6(5):611-614.
  • 10G. Dehm, B. Medres, L. Shepeleva et al.. Microstructure and tribologieal properties of Ni based claddings on Cu substrates[J]. Wear, 1999, 225-229(Part 1):18-26.

二级参考文献49

共引文献24

同被引文献67

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部