期刊文献+

X射线脉冲星累积脉冲轮廓泊松噪声去除的研究 被引量:1

Poisson Noise Removal for X-Ray Pulsar Integrated Pulse Profile
原文传递
导出
摘要 论述了X射线脉冲星辐射光子探测与累积脉冲轮廓构造模型,分析了通过光子计数获取的累积脉冲轮廓的噪声特点,提出了基于非归一化Haar小波的消噪算法,推导了基于Haar小波消噪的阈值函数的最佳参数计算公式。在X射线脉冲星导航地面模拟系统上进行了实验研究,结果表明,消噪后的累积脉冲轮廓峰值信噪比提高2dB以上。通过蒙特卡罗模拟分析,证实消噪后的累积脉冲轮廓有助于提高脉冲到达时间的测量精度。 The photon detection model of X-ray pulsar and the construction of pulsar integrated pulse profile are discussed. The characteristics of pulse profile which is reconstructed by the way of photon counting are analyzed. A de-noising algorithm based on non-normalized Haar wavelet is proposed, and the optimal parameters for wavelet threshold function are derived based on Haar wavelet. The experimental study is done in the ground simulated experimental system for X-ray pulsar navigation. Experimental results show that the peak signal-to-noise ratio can be improved by at least 2 dB, and the accuracy of time-of-arrival (TOA) measurement is also improved, which is proved by Monte Carlo simulation.
出处 《光学学报》 EI CAS CSCD 北大核心 2011年第8期13-19,共7页 Acta Optica Sinica
关键词 测量 脉冲星导航 脉冲轮廓 泊松分布 峰值信噪比 HAAR小波 measurement pulsar navigation pulse profile Poisson distribution peak signal-to-noise ratio Haarwavelet
  • 相关文献

参考文献9

二级参考文献29

  • 1邓玉强,邢岐荣,郎利影,柴路,王清月,张志刚.THz波的小波变换频谱分析[J].物理学报,2005,54(11):5224-5227. 被引量:16
  • 2谢振华,许录平,倪广仁,王岩.基于一维选择线谱的脉冲星辐射脉冲信号辨识[J].红外与毫米波学报,2007,26(3):187-190. 被引量:11
  • 3唐孝威,自然杂志,1988年,11卷,40页
  • 4You K,Chin Phys Lett,1986年,3卷,345页
  • 5Chang T B,Phys Lett B,1985年,157卷,357页
  • 6裴鹿成,计算机随机模拟
  • 7胡昌华 张军波 等.基于MATLAB的系统分析与设计--小波分析[M].西安:西安电子科技大学出版社,2001..
  • 8MallatS著 扬力华 戴道清 译.信号处理的小波导引[M].北京:机械工业出版社,2002.142-150.
  • 9沈凤麟 等.信号统计分析与处理[M].合肥:中国科技大学出版社,2002-03..
  • 10Hewish A,Bell S J,Pilkington J D H,Scott P F,Collins R A 1968 Nature 217 709

共引文献54

同被引文献12

  • 1I. S. Sheikh. The Use of Variable Celestial X Ray Sources for Spacecraft Navigation [D]. Maryland: University of Maryland, 2005.
  • 2W. Sweldens. The lifting scheme: a new philosophy in biorthogonal wavelet construction [J]. SPIE, 1995, 25 ( 1 ) : 68-79.
  • 3I. Daubechies, W. Swenldens. Factoring wavelet transform into lifting steps[J]. J. Fourier Anal. Appl. , 1998, 4(3): 247-269.
  • 4M. Nasri, H. Nezamabadi-pour. Image denoising in the wavelet domain using a new adaptive thresholding function[J]. Neurocornputing, 2009, 72(4) : 1012- 1025.
  • 5F. Favata, A. N. Parmar, U. Lamers et al.. The SAX- LEGSPC data reduction and analysis system- an example of a minimalist approach -[C]. Astronomical Data Analysis Software and Systems IV, 1995, 77:383.
  • 6X. -P. Zhang, M. D. Desai. Addaptive denoising based on SURE risk [J]. IEEE Signal Processing Lett. , 1998, 5(10) : 265-267.
  • 7X.-P. Zhang. Thresholding neural network for adaptive noise reduction [J]. IEEE Trans. Neural Networks, 2001, 12 (3) : 567-584.
  • 8邵永社,李晶,何向晨,陈鹰.提升小波与隐马尔科夫模型的SAR图像噪声滤波[J].系统工程与电子技术,2008,30(5):828-831. 被引量:2
  • 9苏哲,许录平,王勇,谢振华,罗楠.改进小波空域相关滤波的脉冲星微弱信号降噪[J].系统工程与电子技术,2010,32(12):2500-2505. 被引量:20
  • 10刘云侠,杨国诗,贾群.基于双提升小波的自适应混沌信号降噪[J].电子学报,2011,39(1):13-17. 被引量:10

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部