期刊文献+

偏度在独立元分析模型中的作用分析及算法设计 被引量:3

Investigation on the skewness for independent component analysis
原文传递
导出
摘要 相对于峭度(kurtosis),偏度(skewness)历来在独立元分析(ICA)的研究中就没有得到充分重视.尤其是当关于峭度符号的一比特匹配定理在理论上被证明了以后,偏度似乎更是变成了ICA模型中的一个无用统计量.但当信号的峭度很小或者其非Gauss性主要源自于偏度时,仅仅利用峭度信息是不足够的.本文目的就在于分析和讨论在此种情况下独立元分析如何利用偏度信息.首先从理论上分析了偏度在ICA模型中的作用,结果表明在偏度上并不存在与峭度类似的一比特匹配定理,也就是说,算法中模型密度函数的选择无需考虑其偏度与源信号偏度的符号匹配问题.在此基础上,本文进一步提出了一套灵活的模型密度函数设计方法,并提出了一个算法实例,它可以适用于具有任意偏度和峭度组合的信号. Skewness has received much less attention than kurtosis in the independent component analysis (ICA).In particular,the skewness seems to become a useless statistics after the kurtosis related one-bit-matching theorem was proven.However,as the non-Gaussianity of one signal comes mainly from skewness,it is intuitively understandable that its recovery should not rely on kurtosis.In this paper we discuss the skewness based ICA,and show that any probability density function (pdf) with non-zero skewness can be employed by ICA for the recovery of the source with non-zero skewness,without needing to consider the skewness sign.The observation together with the one-bit-matching theorem provides a basic guideline for the model pdf design in ICA algorithm.
作者 刘智勇 乔红
出处 《中国科学:信息科学》 CSCD 2011年第8期998-1012,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60975002)资助项目
关键词 独立元分析 偏度统计量 峭度统计量 一比特匹配定理 independent component analysis skewness kurtosis one-bit-matching theorem
  • 相关文献

参考文献23

  • 1Seungjin Choi,Ruey-Wen Liu,Andrzej Cichocki.A Spurious Equilibria-free Learning Algorithm for the Blind Separation of Non-zoer Skewness Signals[J]. Neural Processing Letters . 1998 (2)
  • 2Xu L,Cheung C C,Amari S I.Learned parametric mixture based ICA algorithm. Neural Computation . 1998
  • 3Cheung C C,Xu L.Some global and local convergence analysis on the information-theoretic independent component analysis approach. Neural Computation . 2000
  • 4Xu L.One-bit-matching theorem for ICA,convex-concave programming on polyhedral set,and distribution approxi-mation for combinations. Neural Computation . 2007
  • 5Dyrholm M,Makeig S,Hansen L K.Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG. Neural Computation . 2007
  • 6Tong L,Inouye Y,Liu R W.Waveform preserving blind estimation of multiple independent sources. IEEE Transactions on Signal Processing . 1993
  • 7Bell AJ,Sejnowski TJ.An information maximization approach to blind separation and blind deconvolution. Neural Computation . 1995
  • 8Lee TW,Girolami M,Sejnowski TJ.Independent component analysis using an Extended Infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation . 1999
  • 9Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks . 1999
  • 10Amari S A,Cichocki,H H Yang.A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems . 1996

同被引文献25

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部