期刊文献+

二氧化碳加富与阳光紫外辐射对球形棕囊藻的耦合效应 被引量:2

The coupled effects of carbon dioxide enrichment and ultroviolet radiation on Phaeocystis globosa Scherffel
下载PDF
导出
摘要 在含有和滤除紫外(UV)辐射(UVR,280-400 nm)的阳光条件下,向静止、恒温的培养体系中分别充含390×10^-6和800×10^-6体积CO2的空气,以期探讨CO2浓度升高与阳光UV辐射对球形棕囊藻(Phaeocystis globosa Scherffel)的生理生态学影响。结果显示,该藻对CO2加富和UVR的响应与细胞密度密切相关。在细胞密度较低时,CO2加富导致生长和有效光化学效率分别下降了11.0%和10.7%,UVR对两者的抑制率分别达19.2%和41.7%。在细胞密度较高时,CO2加富和UVR的影响明显减小,UVR的存在甚至导致生长速率的增加。UVR降低了该藻的最大电子传递速率及光能利用效率,在周围空气下分别达14.1%和21.0%,CO2加富使其进一步下降,分别达8.2%和17.6%。细胞Chl a和Chl c及类胡萝卜素含量在高CO2条件下显著增加(达4.6%,5.9%和5.2%);UVR导致类胡萝素含量升高(达4.3%)。结果表明,在阳光辐射下,CO2加富导致球形棕囊藻抵御强光及UVR胁迫能力下降,其对此的生化响应是增加具有保护作用的类胡萝卜素的含量。 CO2 perturbation experiments were carried out under the solar radiation with or without UV radiation(280~400 nm) in a temperature-controlled water bath to evaluate the coupled effects of CO2 and UVR on Phaeocystis globosa Scherffel that forms harmful algal blooms.The results show that both of high CO2 and UVR stress on the algae.The high concentration CO2 decreases a specific growth rate and the photochemical efficiency of the algae by up to 11.0% and 10.7%,respectively,and the UVR does further them 19.2% and 41.7%.With its cell density increasing,however,their inhibition to the alga was declining,and to minus value.UVR decreases its maximal relative electron transpert rate and photosynthetic efficiency by 14.1% and 21.0%,respectively,in ambient air,and additional 8.2% and 17.6% in the CO2-enriched.CO2 enrichment increases chlorophyll a,chlorophyll c and carotenoids by 4.6%,5.9% and 5.2%,respectively.The UVR increases carotenoids by 4.3%.The studies indicate that the high concentration CO2 aggravates the damage of UVR to the algae,which increaseds in carotenoids as a protective response.
出处 《海洋学报》 CAS CSCD 北大核心 2011年第4期155-162,共8页
基金 国家自然科学基金项目(40930846) "长江学者和创新团队发展计划"项目(IRT0941)
关键词 二氧化碳 紫外辐射 生长 光化效率 球形棕囊藻 carbon dioxide growht photochemical efficiency Phaeocystis globosa ultroviolet
  • 相关文献

参考文献32

  • 1CALDEIRA K, WICKETT M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425: 365.
  • 2KERR R A. Ozone loss, greenhouse gases linked[J]. Science, 1998, 280(5361):202.
  • 3DAMERIS M. Depletion of the ozone layer in the 21st century[J]. Angewandte Chemic International Edition, 2010, 49: 489--491.
  • 4RSVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O) : the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326: 123--125.
  • 5HEIN M, SAND-JENSEN K. CO2 increases oceanic primary production[J]. Nature, 1997, 388: 526--527.
  • 6邹定辉,陈雄文.高浓度CO_2对条浒苔(Enteromorpha clathrata)生长和一些生理生化特征的影响[J].海洋通报,2002,21(5):38-45. 被引量:13
  • 7GAO K S, GUAN W Q, HELBLING E W. Effects of solar ultraviolet radiation on photosynthesis of the marine red tide alga Heterosig- rna akashiwo (Raphidophyceae)[J]. Journal of Photochemistry and Photobiology: B, 2007, 86: 936--951.
  • 8GAO K S, LI G, HELBLING E W, et al. Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea [J]. Journal of Photochemistry and Photobiology.. B, 2007, 83: 802--809.
  • 9GAO K S, WU Y P, LI G, et al. Solar UV radiation drives CO2 fixation in marine phytoplankton., a double-edged sword[J]. Plant Phys- iology, 2007, 144: 54--59.
  • 10BEARDALL J, RAVEN J A. The potential effects of global climate change on microalgal photosynthesis, growth and ecology [J]. Phy- cologia, 2004, 43: 26--40.

二级参考文献59

  • 1[1]Drake B J, Gonzalez-Meler M A, Long S P. More efficient plants: a consequence of rising atmospheric CO2[J] Annu. Rev. Plant Physiol. Plant Mol.Biol., 1997, 48: 609~639.
  • 2[2]Makino A, Mae T. Photosynthesis and plant growth at elevated levels of CO2[J]. Plant Cell Physiol., 1999, 40(10). 999~ 1006.
  • 3[3]Riebesell U, Wolf-Gladrow D A, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates[J]. Nature, 1993, 361: 249~251.
  • 4[4]Hein M, Sand-Jensen K. CO2 increases oceanic primary production[J]. Nature, 1997, 388: 526~527.
  • 5[5]Reiskind JB, Beer S, Bowes G. 1989. Photosynthesis, photorespiration and ecophysiological interaction in marine macroalgae[J]. Aquatic Bot., 34: 131~152.
  • 6[6]Gao K, McKinley K R. Use of macroalgae for marine biomass production and CO2 remediation: a review[J]. J. Appl. Phycol., 1994, 6: 45~60.
  • 7[7]Gao K, Aruga Y, Asada K et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis[J]. J Appl Phycol., 1993, 5: 563~571.
  • 8[8]Gao K, Aruga Y, Asada K etal. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations[J]. J. Appl. Phycol., 1991, 3: 356~362.
  • 9[9]Garcia-Sanchez M J, Fernandez J A, Niell F X. Effect of inorganic carbon supply on the photosynthetic physiology ofGracilaria tenuistipitata[J]. Planta, 1994, 194: 55~61.
  • 10[10]Andria J R, Vergara J J, Perez-Llorens J L. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels[J]. Eur J Phycol, 1999, 34:497 ~504.

共引文献40

同被引文献76

引证文献2

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部