期刊文献+

基于动态模糊神经网络的机床时变定位误差补偿 被引量:18

Time-varying Position Error Compensation of Machine Tools Based on Dynamic Fuzzy Neural Networks
下载PDF
导出
摘要 为提高数控机床的定位精度,提出基于动态模糊神经网络进行数控机床时变定位误差补偿的方法。针对数控机床定位误差影响因素复杂、模糊规则难于获取的情况,改进动态模糊神经网络,使其能够应用于多输入多输出系统,并实现模糊规则的自动在线辨识与生成。通过测量机床温度和定位精度,应用改进后的动态模糊神经网络建立机床时变定位误差预测模型。运用该模型对数控机床进行定位误差补偿试验,并与径向基神经网络模型补偿的效果进行比较,结果显示,基于动态模糊神经网络的数控机床时变定位误差预测模型精度高、泛化能力强、鲁棒性优,适用于对数控机床定位误差的长时间、高精度的实时补偿。 A new time-varying position error compensation method for machine tools based on dynamic fuzzy neural networks(D-FNN) is presented to improve the positioning accuracy of numerical control(NC) machine tools.In view of the complexity of influencing factors of NC machine tool positioning accuracy and the difficulty to obtain fuzzy rules,the D-FNN is improved to fit for multiple-input multiple-output system,and also to automatically online identify and generate fuzzy rules.Through measuring the temperature and positioning accuracy of NC machine tool,a NC machine tool time-varying position error prediction model is build on the basis of the improved D-FNN.Then this model is used to compensate the NC machine tool's positioning error,and its effect is compared with the compensation effect of a radial basis function(RBF) neural network model,which shows that the D-FNN model features high accuracy,strong generalization ability and excellent robustness,thus being more suitable for long-time,high-precision real time compensation of NC machine tools.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第13期175-179,共5页 Journal of Mechanical Engineering
基金 国家科技重大专项(2009ZX04011-033) 辽宁省教育厅科研计划(LT2010020) 辽宁省科技攻关(2008220011)资助项目
关键词 动态模糊神经网络 时变定位误差 数控机床 误差补偿 Dynamic fuzzy neural networks Time-varying position error Numerical control machine tools Error compensation
  • 相关文献

参考文献12

二级参考文献34

  • 1刘丽冰.数控机床在线检测及误差补偿关键技术研究:博士学位论文[M].天津:天津大学,1998..
  • 2休斯顿R L 刘又午.多体系统力学(上、下册)[M].天津:天津大学出版社,1987/1991..
  • 3章青.数控机床定位误差建模、参数辨识及补偿技术的研究:博士学位论文[M].天津:天津大学,1995..
  • 4BATENI S M, JENG D S. Estimation of pile group scour using adaptive neuro-fuzzy approach[J]. Ocean Engineering, 2007, 34(8–9): 1 344–1 354.
  • 5BATENI S M, BORGHEI S M, JENG D S. Neural network and neuro-fuzzy assessments for scour depth around bridge piers[J]. Engineering Applications of Artificial Intelligence, 2007, 20(3): 401–414.
  • 6HUANG M J, TSOUT Y L, LEE S C. Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge[J]. Knowledge-Based Systems, 2006, 19(6): 396–403.
  • 7HUANG M L, CHEN H Y, HUANG J J. Glaucoma detection using adaptive neuro-fuzzy inference system[J]. Expert Systems with Applications, 2007, 32(2): 458–468.
  • 8POLAT K, GUNES S. A hybrid medical decision making system based on principles component analysis, k-NN based weighted preprocessing and adaptive neuro-fuzzy inference system[J]. Digital Signal Processing, 2006, 16(6): 913–921.
  • 9POLAT K, GUNES S. An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease[J]. Digital Signal Processing, 2007, 17(4): 702–710.
  • 10THANGAVEL K, PETHALAKSHMI A. Dimensionality reduction based on rough set theory: A review[J]. Applied Soft Computing, 2009, 9(1): 1–12.

共引文献303

同被引文献185

引证文献18

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部