期刊文献+

基于递阶粒子群优化径向基函数人工神经网络的光性能监控 被引量:3

Investigation on Optical Performance Monitoring Based on Optimized Radial Basis Function Artificial Neural Networks
原文传递
导出
摘要 为解决差错反向传输神经网络在透明可重构光网络光性能监测中精度不足的问题,提出一种基于优化的径向基函数人工神经网络的光性能监测方案。在该方案中,以信号眼图参数为网络输入,以光信噪比、色散和偏振模色散为网络输出;采用二进制与十进制相结合编码的递阶粒子群方法,用适应度函数引导粒子向小规模和小误差方向运动,进行神经网络的结构与参数自适应优化;分别以不同光信噪比,不同色散和偏振模色散水平仿真信道中传输速率为40 Gb/s差分相移键控仿真信号,进行网络训练和测试,并将测试结果与相同情形下基于差错反向传输法神经网络的光性能监测结果进行比较。结果表明,所提方案在保有人工神经网络方案优点的基础上,有着更好的监测精度。 For the improvement of optical performance monitoring in transparent and reconfigurable optical networks using artificial neural networks trained with eye-diagram parameters, radial basis function artificial neural network models to simultaneously identify three separate impairments that can degrade optical channels, namely optical signal-to-noise ratio, chromatic dispersion, and polarization-mode dispersion, are developed. The neural networks are trained with the parameters derived from eye-diagram as inputs and the tested levels of concurrent impairment as outputs. They are optimized by hierarchical particle swarm optimization method. In the process of network optimization, the particle swarm inclines to small scales and small errors by choosing proper fitness functions. Finally, the prediction of levels of concurrent impairment drawn from the optimized models is realized by simulation experiments, and a better performance compared with those based on backward propagation artificial neural network models under the same testing circumstances is obtained.
作者 付丽辉
出处 《激光与光电子学进展》 CSCD 北大核心 2011年第8期82-87,共6页 Laser & Optoelectronics Progress
基金 江苏省科技支撑项目(BE2009100)资助课题
关键词 光通信 光信能监测 人工神经网络 粒子群优化 optical communication optical performance monitoring artificial neural networks particle swarm optimization
  • 相关文献

参考文献15

  • 1D. C. Kilper, R. Bach, D. J. Blumenthal el al.. Optical performance monitoring[J]. J. Lightwave Technol. , 2004, 22(1) : 294-304.
  • 2Shake H. Takara, S. Kawanishi, Y. Yamabayashi. Optical signal quality monitoring method based on optical sampling[J]. Electron. Lett., 1998, 34(10): 2152-2154.
  • 3S. D. Dods, T. B. Anderson. Optical performance monitoring technique using delay tap asynchronous waveform sampling [C]. OFC/NFOEC Tech. Gid., 2006, OThP5.
  • 4张欢,李蔚,梅君瑶,王腾,迟楠,黄德修.动态光网络中交叉相位调制和放大自发辐射噪声积累效应的传输代价[J].中国激光,2009,36(5):1111-1117. 被引量:4
  • 5寿国础,胡怡红,郭志刚,钱宗珏.频谱分割波分复用无源光网络及色散影响[J].光学学报,2009,29(2):312-315. 被引量:2
  • 6李传起,周谞,宋标,孙婷婷,赵立龙,朱迎春.一种光码分多址无源接入网及其性能研究[J].光学学报,2010,30(3):660-664. 被引量:9
  • 7胡宗福,王浩.有源光纤环形腔内相位调制产生多波长激光[J].光学学报,2010,30(3):833-838. 被引量:7
  • 8R. A. Kokoog, T. C. Banwell, J. W. Ganneu et al.. Automatic identification of impairments using support vector machine pattern classification on eye diagrams[J]. IEEE Photon. Technol. Lett. , 2009, 18(5) : 2398-2400.
  • 9Trung D. , Jochen Schroder, Mark Pelusi et al.. Photonic chip-based simultaneous multi impairment monitoring for phase- modulated optical signals[J]. J. Lightwave Technol. , 2010, 28(11) : 3176-3183.
  • 10I. Shake, H. Takara, S. Kawanishi. Simple measurement of eye diagram and BER using high-speed asynchronous sampling [J]. J. Lightwave Technol. , 2004, 22(5): 1296-1302.

二级参考文献53

共引文献25

同被引文献33

  • 1Xinxing Liu,Wenhui Hao,Zhihui Yang,Yulong Tang.High-peak-power random Yb-fiber laser with intracavity Raman-frequency comb generation[J].High Power Laser Science and Engineering,2023,11(1):82-89. 被引量:1
  • 2M.J.V.Streeter,C.Colgan,C.C.Cobo,C.Arran,E.E.Los,R.Watt,N.Bourgeois,L.Calvin,J.Carderelli,N.Cavanagh,S.J.D.Dann,R.Fitzgarrald,E.Gerstmayr,A.S.Joglekar,B.Kettle,P.Mckenna,C.D.Murphy,Z.Najmudin,P.Parsons,Q.Qian,P.P.Rajeev,C.P.Ridgers,D.R.Symes,A.G.R.Thomas,G.Sarri,S.P.D.Mangles.Laser wakefield accelerator modelling with variational neural networks[J].High Power Laser Science and Engineering,2023,11(1):67-74. 被引量:5
  • 3Jinpu Lin,Florian Haberstroh,Stefan Karsch,Andreas Döpp.Applications of object detection networks in high-power laser systems and experiments[J].High Power Laser Science and Engineering,2023,11(1):52-60. 被引量:19
  • 4Yu Yihua, Zheng Xuanyuan. Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution[J]. Signal Processing, 2011, 91 (5) : 1339 -- 1342.
  • 5Rehab F, Abdel Kader. Hybrid discrete PSO with GA operators for efficient QoS-multicast routing[J]. Ain ShamsEngineering Journal, 2011, 2(1): 21--31.
  • 6Lee Ming Jer, Antonsen Thomas M, Ott Edward, et al.. Theory of chaos regularization of tunneling in chaotic quantum dots[J]. PhysRevE, 2012, 86(5).. 056212.
  • 7B Vasumathi, S Moorthi. Implementation of hybrid ANN-PSO algorithm on FPGA for harmonic estimation [J]. Engineering Applications of Artificial Intelligence, 2012, 25(3): 476--483.
  • 8Ju Lynn Ong, AbdKrim Seghouane. Feature selection using mutual information in CT colonography[J]. Pattern Recognition Lett, 2011, 32(2): 337--341.
  • 9Qinghua Hu, Lei Zhang, David Zhang, et al.. Measuring relevance between discrete and continuous features based on neighborhood mutual information[J]. Expert Systems with Applications, 2011, 38(9).. 10737--10750.
  • 10Nabil Sabor, Ahmad F A1-Ajlouni , Mohammed Abo-Zahhad, et al.. A new method for fastening the convergence of immune algorithms using an adaptive mutation approach[J]. J Signal and Information Process, 2012, 3(1): 86--91.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部