期刊文献+

栅格数据地学可视化分析环境的构建分析

The Construction of Geo-Visual Analysis Environment for Raster Data
原文传递
导出
摘要 以遥感数据、数字高程数据等为代表的栅格数据获取技术的进步,以及栅格数据本身适合地学模拟的特点,使得栅格数据应用越来越广泛。当前以定量计算为主的方法难以有效支撑栅格数据分析任务,将可视化引入,充分利用人机协同优势,形成栅格数据地学可视化分析环境是一个较好的解决途径。但是,栅格数据大数据量的特征会引起属性空间可视化时的遮挡问题,分析者难以通过可视化分析环境有效识别有意义的地学模式。本研究主要针对这一问题,在现有方法基础上,提出了一种基于体绘制的层次性栅格数据地学可视化分析环境构建方法。当栅格数据集较大时,采用体绘制方法表达密度信息,避免大数据量引起的遮挡问题;在分析者通过人机交互缩小感兴趣数据集后,采用平行坐标法进行可视化,支持细节模式的发现。新方法所构建的原型系统被成功应用于从地形数据集中发现代表土壤类型的聚类模式,从而验证了方法的有效性。 Developments of raster data capture technologies and demands from application fields call for advanced raster data analysis methods.Automatic algorithms often cannot well support this need due to the complexity of geographical phenomenon and limitations of algorithms themselves.Geo-visual analytics that involve human's visual analytical capability in data analysis attracts attention in recent years.However,Raster datasets usually have large amount of pixels,which may cause serious clotting problem in visualizing raster data in attribute space and thus it is difficult for analysts to visually detect patterns in raster datasets.The research reported here mainly focuses on this problem.Based on existing solutions and current computer graphics technologies,we propose a new volume-rendering-based hierarchical approach to construct interactive geo-visual analysis environment for raster data.In the first hierarchy,volume rendering is used to express density information instead of original pixels in attribute space to avoid clotting problem.In the second hierarchy,after analysts select relatively small-sized sub-datasets using some interaction tools,parallel coordinates plot is used to support analysts to capture detailed patterns in attribute space.On different hierarchies of this progressive visual interface,attribute space visualizations are linked with geographic space visualization to facilitate the detection of patterns with geographic meanings.Software prototype was developed based on this idea and then applied in a terrain dataset to find small clusters that may represent possible soil types in digital soil mapping.The case study shows that the proposed approach can well support the progressive detection of geographic cluster patterns that may be neglected by automatic clustering algorithms and thus demonstrates effectiveness of the proposed approach.
出处 《地球信息科学学报》 CSCD 北大核心 2011年第4期472-479,共8页 Journal of Geo-information Science
基金 国家自然科学基金项目(40971236) 国际科技合作计划专题项目(2010DFB24140) "973"项目(2007CB407207) 威斯康辛大学麦迪逊分校Vilas Associate Award和Hammel Faculty Fellow Award
关键词 地学可视化分析 栅格数据 遮挡 体绘制 数字土壤制图 geo-visual analytics raster data clotting volume rendering digital soil mapping
  • 相关文献

参考文献16

  • 1Wegman EJ.Visual data mining. Statistics in Medicine . 2003
  • 2McBratney A B,,Mendonca Santos M L,Minasny B.On digital soil mapping. Geoderma . 2003
  • 3芮小平,张彦敏.空间信息可视化挖掘研究[J].测绘科学,2005,30(2):64-66. 被引量:8
  • 4Schowengerdt R A.Remote Sensing:models and methods for image processing. . 1997
  • 5Inselberg A,Dimsdale B.Parallel coordinates: a tool for visualizingmulti-dimensional geometry. Proceedings of the First IEEE Conference . Oct23-261990
  • 6Andrienko Gennady,,Andrienko Natalia.Interactive maps for visual exploration of grid and Vector geodata. ISPRS Journal of Photograrnmetry and Remote Sensing . 2003
  • 7Fua Y H,Ward M O,Rundensteiner E A.Hierarchi-cal Parallel Coordinates for Visualizing Large Multiva-riate Data Sets. Proc.IEEE Conf.on Visualiza-tion’’99 . 1999
  • 8Healey C G,Enns J T.Building Perceptual Textures toVisualize Multidimensional Datasets. Proc.IEEEConf.on Visualization’’98 . 1998
  • 9Zhang X,Pazner M.An Icon-based Co-geovisualizationTechnique for Multivariate Geospatial Data. Proc.7th International Workshop on Geographical In-formation System Conference . 2007
  • 10Keim D A.Pigel-oriented Visualization Techniques for Exlploring Very Lange Databases. Journal of Computational and Graphical Statistics . 1996

二级参考文献17

  • 1李德仁,程涛.从GIS数据库中发现知识[J].测绘学报,1995,24(1):37-44. 被引量:62
  • 2朱阿兴,李宝林,杨琳,裴韬,秦承志,张甘霖,蔡强国,周成虎.基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J].土壤学报,2005,42(5):844-851. 被引量:51
  • 3李小文,高峰,王锦地,朱启疆.遥感反演中参数的不确定性与敏感性矩阵[J].遥感学报,1997,1(1):5-14. 被引量:59
  • 4O R Zaiane and J Han. Resource and knowledge discovery in global information systems: A preliminary design and experiment. In Proc. of the First Int'l Conference on Knowledge Discovery and Data Mining, Montreal,Quebec. 1995: 331-336.
  • 5Ferreira de Oliveira, M C Levkowitz H. From Visual Data Exploration to Visual Data Mining: A Survey [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2003, 9(3): 378-384.
  • 6芮小平.[D].中科院遥感应用研究所,2004.
  • 7田庆久.遥感(RS)信息定量化理论、方法与应用[A].'98遥感进展(C),1998.
  • 8Witmer,Jeffrey.DATA Analysis:An Introduction[M].Englewood Cliffs,NJ:Prentice Hall,1992.
  • 9Wenzhong Shi,Spatial Data Quality[M].Taylor & Francis,London and New York,2002.
  • 10W.Z Shi,M.F Goodchild,P.F.Fisher Proceedings of the International Symposium on Spatial Data Quality'99[C],HongKong,1999.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部