期刊文献+

复杂网络上传染病防控的研究

A Study on Epidemic Prevention and Control of Complex Networks
下载PDF
导出
摘要 在分析小世界网络和无标度网络的概念和特征的基础上,回顾经典的传染病模型,从隔离和接种疫苗两个方面,对复杂网络上传染病防控的研究成果进行系统总结,并展望未来的发展趋势。 Based on the analysis of the definition and features of small-world networks and scale-free networks,traditional epidemic models are reviewed and a systematical review on epidemic prevention and control of complex networks is then presented from the perspective of quarantining and vaccinating respectively.Finally,the trends of possible further research are discussed.
作者 王剑凌
出处 《福建教育学院学报》 2011年第2期125-128,共4页 Journal of Fujian Institute of Education
关键词 复杂网络 传染病防控 SIR模型 SIS模型 complex networks; epidemic prevention and control; SIR model; SIS model
  • 相关文献

参考文献17

  • 1胡新利,周义仓.具有潜伏和隔离的传染病模型的全局稳定性[J].生物数学学报,2009,24(3):461-469. 被引量:13
  • 2张海峰,傅新楚.含有免疫作用的SIR传染病模型在复杂网络上的动力学行为[J].上海大学学报(自然科学版),2007,13(2):189-192. 被引量:21
  • 3GOLDENBERG J,SHAVITT Y,SHIR E,et al.Di-stributive immunization of networks against viruses us-ing the"honey-pot"architecture. Nature Physics . 2005
  • 4MARRO J,DICKMAN R.Nonequilibrium phasetransitions in lattice models. . 1999
  • 5AHMED E,HEGAZI A S,ELGAZZAR A S.Anepidemic model on small-world networks and ring vac-cination. International Journal of Modern Physics C . 2002
  • 6BAI W J,ZHOU T,WANG B H.Interplay betweenHIV/AIDS epidemics and demographic structures basedon sexual contact networks. International Journal ofModern Physics C . 2007
  • 7Watts DJ,Strogatz SH.Collective dynamics of small-world networks. Nature . 1998
  • 8Albert-Laszlo Barabasi,Reka Albert.Emergence of scaling in random networks. Science . 1999
  • 9Kermack WO,McKendrick AG.A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A Mathematical, Physical and Engineering Sciences . 1927
  • 10Moore C,Newman M E J.Epidemics and percolation in small-world networks. Physical Review E Statistical, Nonlinear and Soft Matter Physics . 2000

二级参考文献13

  • 1陈军杰.若干具有非线性传染力的传染病模型的稳定性分析[J].生物数学学报,2005,20(3):286-296. 被引量:26
  • 2徐文雄,张仲华,徐宗本.具有一般形式饱和接触率SEIS模型渐近分析[J].生物数学学报,2005,20(3):297-302. 被引量:23
  • 3ZHOU Tao,FU Zhongqian,WANG Binghong.Epidemic dynamics on complex networks[J].Progress in Natural Science:Materials International,2006,16(5):452-457. 被引量:36
  • 4M Y Li, Wang Liancheng. Global stability in some SEIR epidemic models[J]. Institute for Mathematics and its Applications, 2002, 126:295-311.
  • 5M Y Li, J S Muldowney. Global stability for the SEIR model in epidemiology[J]. Mathematical Biosciences, 1994, 125(2):155-164.
  • 6M Y Li, John R.Graef, Wang Liancheng, et al. Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences, 1999, 160(2):191-213.
  • 7Fan Meng, M Y Li, Wang Ke. Global stability of an SEIS epidemic model with recruitment and a varying total population size[J]. Mathematical Bioseiences, 2001, 170(2):199-208.
  • 8Zhang Juan, Ma Zhien. Global dynamics of an SEIR epidemic model with saturating contact rate[J]. Math Biosci, 2003, 185:15-32.
  • 9Li Guihua, Jin Zhen. Clobal stability of an SEI epidemic model with general contact rate[J]. Chaos, Solitons and Fractals, 2005, 23(3):997-1004.
  • 10J K Hale. Ordinary Differential Equations[M]. New York: John Wiley& Sons, 1969.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部