期刊文献+

基于ARM和信息融合技术的矿井环境监测系统 被引量:2

Mine Environment Monitoring System Based on ARM and Information Fusion Technology
下载PDF
导出
摘要 针对煤矿井下的环境复杂性,提出一种低成本、低功耗和高性能的网络化安全监测与预警系统很必要。介绍了一种基于三星公司32位ARM处理器的用于煤矿环境监测与预警的解决方案,提出了硬件构成及相关算法的实现方法,该系统通过在ARM中进行多传感器信息融合处理,利用两级融合进行多传感器状态识别,最后通过开滦集团钱家营煤矿数据作应用,证明了系统的实用性和可靠性。同时利用ARM良好的网络集成性能将现场局域网通过以太网与远程监控主机互联,实现系统的监控、决策网络化,优化和提高了系统的使用性能。 Aimed at the complex environment in local mine,it is essential to propose a network of safety monitoring and warning system with low cost,low power consumption and high performance. This paper provided a solution applying to environment monitoring and warning system based on 32 bit ARM (Advanced RISC Machines) processor made by Samsung Company. It provided hardware components and related algorithm and made multi-sensor information fusion processing in ARM, which could identify multi-sensor status by a two level fusion structure. Finally it proved the practicality and reliability of the system by using the real data provided by Kailuan Group Qian JiaYing Coal Mine. Meanwhile it realized the system monitoring, decision-making network, optimization and improved the system performance based on the good network integration performance of ARM by interconnecting field LAN via Ethernet and remote monitoring host.
出处 《压电与声光》 CSCD 北大核心 2011年第4期661-664,668,共5页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(50874059) 教育部博士点基金资助项目(200801470003)
关键词 ARM 信息融合 多传感器 远程监测 ARM information fusion multi-sensor remote monitoring
  • 相关文献

参考文献6

二级参考文献40

  • 1倪天龙.人工神经网络在ARM平台上的应用[J].单片机与嵌入式系统应用,2005,5(5):15-17. 被引量:3
  • 2段海龙,彭辉俊,程健.基于ARM的嵌入式以太网通信的实现[J].机械与电子,2006,24(2):9-12. 被引量:8
  • 3王耀南.国家863计划项目验收技术报告-复杂工业过程的综合集成智能控制及应用[M].长沙:湖南大学,2000.150-200.
  • 4王耀南.计算智能数据处理技术及其应用[M].长沙:湖南大学出版社,1999.18-21.
  • 5[3]ARM Limited.ICE User Guide.1998
  • 6[11]Reed R. Pruning algorithms-a survey [J]. IEEE Transaction On Neural Networks, 1993, 4 (5): 740-747.
  • 7[12]George B, Michael G. Feed-forward neural networks [J]. IEEE Potentials, 1994, 13 (4): 27-31.
  • 8[13]Karnin E D. A simple procedure for pruning back-propagation trained neural networks [J]. IEEE, Trans. Neural Networks, 1990, 1(2): 239-242.
  • 9[14]Kung S Y, Hu Y H. A Frobenius approximation reduction method (FARM) for determining optimal number of hidden units [A]. Int. Joint Conf. Neural Networks [C], 1989, 1: 443-447.
  • 10[15]Mozer M C, Smolensky P. Skeletonization: A technique for trimming the fat from a network via relevance assessment. Advances in Neural Information Processing (1) [M]. D. S. Turetzky, Ed. (Denver 1989), 1989, 107-115.

共引文献217

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部