期刊文献+

添加Nb对Zr-4合金在500℃过热蒸汽中耐腐蚀性能的影响 被引量:18

EFFECT OF Nb ON THE CORROSION RESISTANCE OF Zr-4 ALLOY IN SUPERHEATED STEAM AT 500℃
原文传递
导出
摘要 用高压釜腐蚀实验研究了在Zr-4合金成分基础上添加0.1%-0.3%(质量分数)Nb的合金在500℃/10.3MPa过热蒸汽中的耐腐蚀性能,用TEM和SEM分别观察了合金的显微组织和氧化膜断口形貌,结果表明.合金在500℃/10.3 MPa过热蒸汽中腐蚀500 h均未出现疖状腐蚀.完全抑制了疖状腐蚀的产生,这与Nb在αZr中的固溶量较大有关.固溶在αZr中的Nb能抑制疖状腐蚀斑的形核,提高耐疖状腐蚀性能;合金耐均匀腐蚀性能随着Nb含量的增加而降低,这与Nb的添加降低了固溶在α-Zr中的(Fe+Cr)含量有关,也与Zr(Fe,Cr.Nb)_2第二相的析出有关.这2种因素都会加快氧化膜显微组织在腐蚀过程中的演化,促进孔隙和微裂纹的形成. The corrosion resistance of Zr-4+xNb alloys (x=0.1--0.3, mass fraction, %) was investigated in a superheated steam at 500℃ and 10.3 MPa by autoclave tests. The microstructure of the alloys and fracture surface morphology of the oxide film formed on the alloys were observed by TEM and SEM, respectively. Results show that no nodular corrosion appears on Zr-4+xNb alloys in 500 ℃/10.3 MPa superheated steam even for 500 h, which is related to the higher Nb concentration dissolved in α-Zr matrix. The Nb dissolved in α-Zr matrix can restrain the nucleation of nodular corrosion, thus improve the nodular corrosion resistance. The uniform corrosion resistance of Zr-4+xNb alloys is lowered with the increase of Nb content, which is related to the decrease of the solid solution concentration of (Fe+Cr) in α-Zr matrix and the precipitation of the second phase particles of Zr(Fe, Cr, Nb)2, and the two aspects will accelerate the microstructural evolution of the oxide film during corrosion process to promote the formation of pores and micro-cracks. KEY WORDS zirconium alloy, Nb, nodular corrosion, microstructure
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2011年第7期865-871,共7页 Acta Metallurgica Sinica
基金 国家自然科学基金项目50871064和50971084 国家高新技术研究发展计划项目2008AA031701 上海市自然科学基金项目09ZR1411700 上海市重点学科建设项止S30107资助~~
关键词 锆合金 NB 疖状腐蚀 显微组织 zirconium alloy Nb nodular corrosion microstructure
  • 相关文献

参考文献21

  • 1Liu J Z. Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007:112.
  • 2Ogata K. In: Van Swam L F P, Eucken C M, eds., Zirco- nium in the Nuclear Industry: 8th International Sympo- sium, ASTM STP 1023, San Diego, CA: ASTM Interna- tional, 1988:346.
  • 3Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007"; 36:1129.
  • 4Zhou B X, Zhao W J, Miao Z, Huang D C, Jiang Y R. In: Zhou B X, Shi Y K, eds., Proc III-2 China Nuclear Ma- terials Academic Conference in I996, Beijing: Chemical Industry Press, 1997:183.
  • 5Zhou B X, Yao M Y, Li Q, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36:1317.
  • 6Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q. Shanghai Met, 2008; 30:1.
  • 7Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26:364.
  • 8Toffolon-Masclet C, Brachet J C, Jago G. J Nucl Mater, 2002; 305:224.
  • 9Yang W D. Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006:260.
  • 10Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kam- menzind B, Limb~ck M, eds., Zirconium in the Nuclear In- dustry: 15th International Symposium, ASTM STP 1505, Sunriver, Oregon, USA: ASTM International, 2009:360.

同被引文献103

引证文献18

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部