期刊文献+

拟南芥授粉前后花粉与乳突细胞的超微结构 被引量:3

Ultrastructures of Pollen and Papillar Cell of Arabidopsis during Pollination
原文传递
导出
摘要 利用透射电子显微镜技术,对自交亲和植物拟南芥授粉前后花粉和乳突细胞的超微结构进行了观察。发现花粉和柱头乳突细胞一些未经报道的超微结构特征,可能与拟南芥花粉和乳突细胞的识别及花粉管生长相关:(1)成熟花粉中,电子透明的、体积较大的小液泡(直径200~1000nm)呈均匀分布。部分小液泡内含有多层膜状结构物质,推测可能是膜的一种储存形式,与花粉萌发时大量出现的小囊泡有关。(2)花粉萌发时,小液泡由均匀分布变为不均匀分布。(3)授粉前后的乳突细胞顶端和侧端的内壁上有明显的壁内突结构,粘附的花粉开始萌发时的乳突细胞壁内突处可观察到直径50~100nm的小泡存在,表明拟南芥乳突细胞具有一定的分泌功能。 We investigated the ultrastructures of pollen grains and stigmatic papillae cells before and after pollination of Arabidopsis by using transmission electron microscopy. We found some structures, not being reported previously, may be involved in the interaction between the pollen grains/tubes and the papillae cells. (1) In mature pollen grains, the electron-transparent vacuoles 200-1 000 nm are even distribution in cytosol, and some membrane structures are present in those vacuoles, especially the pollen before hydration. (2) The even distribution of vacuoles is changed to polar distribution after pollen germination. (3) Wall ingrowths were found in the inner wall of the papillar cells before and after pollination, which means papillar cells maybe function actively in pollination of Arabidopsis.
出处 《中国细胞生物学学报》 CAS CSCD 2011年第8期892-896,共5页 Chinese Journal of Cell Biology
基金 山东省优秀中青年科学家科研奖励基金(No.BS2009SW035) 国家重大科学研究计划(No.2007CB947600)资助项目~~
关键词 拟南芥 授粉 花粉 乳突细胞 超微结构 Arabidopsis pollination pollen stigmatic papillae ultrastructure
  • 相关文献

参考文献24

  • 1Hiscock S J, Allen AM. Diverse cell signaling pathways regulate pollen-stigma interactions: The search for consensus. New Phytol 2008; 179(2): 286-317.
  • 2Zinkl GM, Zwiebel B, Grier DG, Preuss D. Pollen-stigma adhe- sion in Arabidopsis: A species-specific interaction mediated by hydrophobic molecules in the pollen exine. Development 1999; 126(6): 5431-40.
  • 3Zinkl GM, Preuss D. Dissecting Arabidopsis pollen-stigma inter- actions reveals novel mechanisms that confer mating specificity. Ann Bot 2000; 85(SupplA): 15-21.
  • 4Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 2000; 12(10): 2001-8.
  • 5Mayfield JA, Fiebig A, Johnstone SE, Preuss D. Gene families from the ,4rabidopsis thaliana pollen coat proteome. Science 2001; 292(5526): 2482-5.
  • 6Swanson R, Edlund AF, Preuss D. Species specificity in pollen- pistil interactions. Annu Rev Genet 2004; 38:793-818.
  • 7Huang S, Blanchoin L, Chaudhry F, Franklin-Tong VE, Staiger CJ. A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depo- lymerization of actin filaments. J Biol Chem 2004; 279(22): 23364-75.
  • 8Wu Y, Yan J, Zhang R, Qu X, Ren S, Chen N, Huang S. Arabi- dopsis FIMBR1N5, an actin bundling factor, is required for pol- len germination and pollen tube growth. Plant Cell 2010; 22(11): 3745-63.
  • 9Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB. Genome- wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol 2005; 138(2): 977-89.
  • 10Gao XQ, Zhu DZ, Zhang XS. Stigma factors regulating self- compatible pollination. Front Bio12010; 5(2): 156-63.

二级参考文献31

共引文献62

同被引文献34

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部