期刊文献+

O-GlcNAcase抗原片段的选择、优化表达和多克隆抗体的制备 被引量:1

Antigen selection,optimized expression and polyclonal antibody preparation of O-GlcNAcase
原文传递
导出
摘要 为了探讨O-GlcNAc修饰的生物学作用和相关疾病的发病机理,需制备高效、专一的O-GlcNAcase(OGA)抗体。通过对人源OGA蛋白进行序列分析发现,氨基端1~350 aa片段(sOGA)抗原性和亲水性较强,将该片段构建至原核表达载体pET-28a,并在大肠杆菌Escherichia coli BL21(DE3)中进行诱导表达,通过优化IPTG浓度(0.05 mmol/L)和诱导时间(10 h)获得了高可溶性表达的重组蛋白酶。采用Ni-NTA亲和层析和分子筛层析对重组蛋白进行了纯化,SDS-PAGE检测分子量的大小(45 kDa)和纯度(95%以上)。以4-MU-O-GlcNAc为荧光底物,检测到sOGA的糖苷酶活性为106 nmol/(min.mg),表明该片段是OGA糖苷酶的活性区域。以此片段作为抗原免疫新西兰大白兔,以CNBr活化Sepharose 4B微珠纯化抗血清制备OGA特异性多克隆抗体。Western blotting和ELISA检测表明,该抗体可以特异识别含有OGA糖苷酶活性区域的多种变体,检测灵敏度为0.11 ng/mL(效价为1∶80 000),可应用于O-GlcNAcase生物功能研究。 In order to probe the biological function of O-GlcNAc and the pathogenesis of associated diseases,it is essential to prepare a potent and specific O-G1cNAcase(OGA) antibody.Based on protein sequence analysis,we found N terminal 1?350 amino acids of OGA(sOGA) has high antigenicity and hydrophilicity and then constructed it into plasmid pET28a vector.First,we optimized the expression of sOGA in Escherichia coli BL21(DE3)(0.05 mmol/L IPTG,10 hours) and purified it with the Ni-NTA affinity chromatography and size exclusion chromatography respectively.SDS-PAGE verified the molecular weight(45 kDa) and the purity(95%) of sOGA and the purified protein was subjected to immunize New Zealand rabbits.Finally,we obtained OGA polyclonal antibody by affinity purifying the antiserum with CNBr-activated Sepharose 4B beads.Western blotting and ELISA assay showed that this antibody could recognize three OGA isoforms with high specificity and the sensitivity was 0.11 ng/mL(the titer was 1:80 000).These results indicated the prepared polyclonal antibody of OGA can be used for the biological function study of OGA.
出处 《生物工程学报》 CAS CSCD 北大核心 2011年第8期1183-1190,共8页 Chinese Journal of Biotechnology
基金 国家自然科学基金(Nos.31000371 91013013) 中央高校基本科研业务费(No.65011091)资助~~
关键词 O-GLCNACASE 表达 生物活性 多克隆抗体 亲和纯化 O-GlcNAcase expression biological activity polyclonal antibody affinity purification
  • 相关文献

参考文献17

  • 1Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes: evidence for O-linked GlcNAc. J Biol Chem, 1984, 259(5): 3308-3317.
  • 2Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GIcNAc. Science, 2001, 291(5512): 2376-2378.
  • 3Hart GW, Housley MP, Slawson C. Cycling of O-linked L3-N-acetylglucosamine on nucleocytoplasmic proteins. Nature, 2007, 446(7139): 1017-1022.
  • 4Zeidan Q, Hart GW. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci, 2010, 123: 13-22.
  • 5Gao Y, Wells L, Comer FI, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytasolic beta-N- acetylglucosaminidase from human brain. J Biol Chem, 2001, 276: 9838-9845.
  • 6Dong DL, Hart GW. Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-Glucosaminidase from rat spleen cytosol. J Biol Chem, 1994, 269(30): 19321-19330.
  • 7Forsythe ME, Love DC, Lazarus BD, et al. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GleNAcase) knockout impacts OlcNAc cycling, metabolism, and dauer. Proc Natl Acad Sci USA, 2006, 103(32): 11952-11957.
  • 8Mondoux MA, Krause MW, Hanover JA. C elegans genetic networks predict roles for O-GlcNAc cycling in key signaling pathways. Curr Signal Transd Ther, 2010, 5(1): 60-73.
  • 9Li J, Huang CL, Zhang LW, et al. lsoforms of human O-GlcNAcase show distinct catalytic efficiencies. Biochemistry (Moscow), 2010, 75(7): 938-943.
  • 10Crawford GL, Hart GW, Whiteheart SW. Murine platelets are not regulated by O-linked β-N-acetylglucosamine. Archives Biochem Biophys, 2008, 474(1): 220-224.

同被引文献18

  • 1Tanka N, Okabe T, Isono F, Kashiwaqi M, Nomoto K, Takahashi M, Shi M, Shimazu A, Nishimura T. Lactoquinomycin, a novel anticancer antibiotic. I. Taxonomy, isolation, and biological activity. Journal of Antibiotics, 1985, 38(10) :1327-1332.
  • 2Takano S, Hasuda K, Ito A, Koide Y, Ishii F. A new antibiotic, medermycin. Journal of Antibiotics, 1976, 29 (7) :765-768.
  • 3Toral-Barza L, Zhang W, Huang X, Mcdonald LA, Salaski EJ, Barbieri LR, Ding W, Krishnamurthy G, Hu Y, Lucas J, Bernan VS, Cai P, Levin JI, Mansour TS, Gibbons JJ, Abraham RT, Yu K. Discovery of lactoquinomycin and related pyranonaphthoquinones as potent and allosteric inhibitors of AKT/PKB: mechanistic involvement of AKT catalytic activation loop cysteines. Molecular Cancer Therapeutics, 2007, 6( 11 ) : 3028-3038.
  • 4Salaski EJ, Krishnamurthy G, Ding WD, Yu K, Insaf SS, Eid C, Shim J, Levin JI, Tabei K, Toral-Barza L, Zhang WG, McDonald LA, Honores E, Hanna C, Yamashita A, Johnson B, Li Z, Laakso L, Powell D, Mansour TS. Pyranonaphthoquinone lactones: a new class of AKT selective kinase inhibitors alkylates a regulatory loop cysteine. Journal of Medicinal Chemistry, 2009, 52(8) :2181-2184.
  • 5Itoh T, Taguchi T, Kimberley MR, Booker-Milburn KI, Stephenson GR, Ebizuka Y, Ichinose K. Actinorhodin biosynthesis: structural requirements for post-PKS tailoring intermediates revealed by functional analysis of ActVI-ORFI reductase. Biochemistry, 2007, 46 (27) : 8181-8188.
  • 6Ichinose K, Taguchi T, Ebizuka Y, Hopwood DA. Biosynthetic gene clusters of benzoisochromanequinone antibiotics in identification of genes involved in post-PKS tailoring steps. Actinomycetologica, 1998, 12 (2) : 99- 109.
  • 7Ichinose K, Surti C, Taguchi T, Malpartida F, Booker- Milburn KI, Stephenson GR, Ebizuka Y, Hopwood DA. Proof that the ActVI genetic region of Streptomyces coelicolor A3 (2) is involved in stereospecific pyran ring formation in the biosynthesis of actinorhodin. Bioorganic& Medicinal Chemistry Letters, 1999, 9 (3) : 395 -400.
  • 8Ichinose K, Ozawa M, Itou K, Kunieda K, Ebizuka Y. Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161 : towards comparative analysis of the benzoisochromanequinone gene clusters. Microbiology, 2003, 149(7): 1633-1645.
  • 9Li A, Itoh T, Taguchi T, Xiang T, Ebizuka Y, Ichinose K. Functional studies on a ketoreductase gene from Streptomyces sp. AM-7161 to control the stereochemistry in medermycin biosynthesis. Bioorganic & Medicinal Chemistry, 2005, 13 (24) : 6856-6863.
  • 10Yunt Z, Reinhardt K, Li A, Engeser M, Dahse HM, Giitschow M, Bruhn T, Bringmann G, Piel J. Cleavage of four carbon-carbon bonds during biosynthesis of the griseorhodin a spiroketal pharmacophore. Journal of the American Chemical Society, 2009, 131 (6) :2297-2305.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部