期刊文献+

串联微生物燃料电池的电压反转行为 被引量:4

Voltage Reversal Behavior during Stacking Microbial Fuel Cells in Series
下载PDF
导出
摘要 微生物燃料电池是一种处理废水同时产电的具有广阔应用前景的新型水处理技术,其串联是产生更高电压的有效方法之一,但是会产生电压反转现象降低串联微生物燃料电池的性能。文章将二极管引入串联微生物燃料电池中以考察电压反转的行为。结果表明,不同的串联微生物燃料电池中均会发生电压反转。串联正向二极管的微生物燃料电池的电压反转行为与没有串联二极管的微生物燃料电池类似,但是前者仅仅发生在一个周期的结束阶段。这可能是因为电子流经二极管时被其消耗,从而减缓了电极电势的变化速率。当串联反向二极管时,电压反转发生在仅阴极端连接二极管的单体微生物燃料电池上,而且各单体电池的电压约为其对应的开路电压(0.75 V)。这表明,各个单体电池消耗电子的不平衡性和电极电势的变化是导致电压反转的直接原因。 Stacking microbial fuel cell(MFC) in series is an effective approach to provide higher voltage.However,voltage reversal(VR) adversely affects performance of the stacked MFCs.In this paper,diodes are introduced into three stacked MFCs so as to investigate the VR behavior and offer a diodes-based explanation of the VR.Results show that VR occurs in the different stacked MFCs systems.VR of the stacked MFCs with forward diodes happens in a similar pattern as that without diodes.However,it only happens at the end of a cycle.This can be analyzed that the resistance of the diodes consume a part of the flowing electrons and the speed of potential changes of the electrodes slows down.In the stacked MFCs with reverse diodes,VR happens in the unit MFC with reverse diodes at the cathode end only and the voltages of each unit MFC approximately equal their open circuit voltages.It implies that the imbalanced consumption of electrons in unit MFCs and the potential changes of specific electrode directly result in VR.An effective approach to avoid VR in stacked MFCs is to provide enough substrate for each unit MFC and allow consecutive electrons flowing in the circuit.
出处 《环境科学与技术》 CAS CSCD 北大核心 2011年第8期139-142,共4页 Environmental Science & Technology
基金 国家自然科学基金项目(30800796) 教育部高校博士点基金项目(20070561082) 中央高校基本科研业务费重点项目(2009ZZ0073) 广东省省科技攻关计划项目(2007A020100001)
关键词 微生物燃料电池 电压反转 二极管 串联 电子消耗 电极电势 microbial fuel cell(MFC) voltage reversal diodes stacked cells in series electron consumption electrode potential
  • 相关文献

参考文献10

  • 1You SJ,Zhao QL,Jiang JQ,et al.Sustainable approachfor leachate treatment:electricity generation in microbial fu-el cell. Journal of Environmental Science and Health PartA . 2006
  • 2Rezaei F,Xing D,Wagner R,et al.Simultaneous cellu-lose degradation and electricity production by Enterobactercloacae in a microbial fuel cell. Applied and Environmental Microbiology . 2009
  • 3Oh S E,Logan B E.Voltage reversal during microbial fuel cell stack op-eration. Journal of Power Sources . 2007
  • 4Liu H,Logan B E.Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sea Techno . 2004
  • 5P. Aelterman,,K. Rabaey,H. T. Pham,N. Boon,W. Verstraete.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science andTechnology . 2006
  • 6Oh S.E.,Logan B.E.Hydrogen and electricity Produetionfrom a food Processing wastewater using fermentationand microbial fuel cell technologies. Water Research . 2005
  • 7Logan B E,Hamelers B,Rozendal R,et al.Microbial fuel cells: methodology and technology. Environmental Sciences . 2006
  • 8Lovley DR,Phillips EJP.Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology . 1988
  • 9Min B,Kim J R,Oh S E,et al.Electricity generation from swine waste water using microbial fuel cells. Water Research . 2005
  • 10Zhu N W,Chen X,Zhang T,et al.Improved performance of membranefree single-chamber air-cathode microbial fuel cells with nitric acid andethylenediamine surface modified activated carbon fiber feltanodes. Bioresource Technology . 2011

同被引文献90

  • 1Shen L, Liu L T, Yao Z J, et al. [J]. Environmental Manage ment,2010,46(4) :539-554.
  • 2Panepinto D, Genon G. [J]. Waste and Biomass Valorization, 2012,3(2):197-206.
  • 3Lidija Cucek, Jiri Jaromir Klemes, Zdravko Kravanja. [J]. Clean Technologies and Environmental Policy, 2012,14 (3) : 389-397.
  • 4Kering M K,Biermacher J T,Butler T J,et al.[J]. BioEnergy Research, 2012,5 ( 1 ) : 71-78.
  • 5David Bransby. [J]. BioEnergy Research, 2012,5(3) : 636.
  • 6Deborah Panepinto, Giuseppe Genon. [J]. Waste and Biomass Valorization, 2012,3 (2): 197-206.
  • 7Ren H, Lee H S, Chae J. Miniaturizing microbial fuel cells for poten tial portable power sources: promises and challenges [J/OL]. http://www, springerlink, com/content/536nh8748t255142/, 2012-02-08/2012-05-05.
  • 8中国科学院广州能源研究所.一种垃圾渗滤液的高效处理新方法[P].CN201210005430.3,2012-07-18.
  • 9Nasirahmadi S, Safekordi A A. [J]. International Journal of En vironmental Science and Technology, 2012,9 (3): 473-478.
  • 10Zheng X, Nirmalakhandan N. [J]. Biotechnology Letters, 2010, 32(12):1809-1814.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部