期刊文献+

大型电站燃煤锅炉低NO_x燃烧优化系统及应用 被引量:4

Study and Application of Boiler Operation Optimization for Low NO_x Emissions in Coal-fired Power Plant
下载PDF
导出
摘要 提出了一种锅炉运行优化的系统框架,并着重对建模方法和优化算法进行了讨论。采用一种改进的在线支持向量机方法对学习样本进行处理,并与常规支持向量机模型相结合,形成了一种自适应建模方法,以适应煤质与锅炉实际运行工况的变化。对多目标优化算法进行讨论,并介绍了NSGA II遗传算法在锅炉优化中的应用。以某大型电站锅炉为对象,对本文方法进行了应用研究,所建模型的趋势分析和测试结果均表明了本文算法的正确性,所提出的优化模型以NOx为目标函数,综合考虑了锅炉运行经济性和安全性等约束条件,优化结果表明通过运行参数的优化调整可有效降低锅炉污染物的排放。 A new boiler operation optimization system,based on a new adaptive modeling method and genetic algorithm,was proposed in this paper.Based on an improved support vector regression method with modified criterion for selection of the unwanted trained sample while continuously training of prediction model,a new modeling method was given for adaptively prediction,such that the deviation caused from the variation of coal quality and different operating points can be effectively compensated.The multi-objective optimization algorithm,NAGA II,is included in the proposed optimization scheme.The scheme is further illustrated in a real process of a coal-fired boiler.The analysis and test results of the parametric models were presented.An optimization model,including objective function and constraints,was also given in this paper,and the optimization results revealed the validity of the proposed method.
出处 《锅炉技术》 北大核心 2011年第4期18-22,共5页 Boiler Technology
关键词 燃煤锅炉 优化 模型 算法 coal-fired boiler optimization model algorithm
  • 相关文献

参考文献9

  • 1Li, K. , Thompson, S. , Peng, J. X.. Modelling and predic- tion of NOx emission in a coal-fired power generation plant [J]. Control Engineering Practice, 2004(12) : 707-723.
  • 2Habib MA, Ben-Mansour R, Antar MA. Flow field and thermal characteristics in a model of a tangentially fired fur- nace under different conditions of burner tripping[J].Heat and Mass Transfer, 2005, 41(10):909-920.
  • 3Yao H M,Vuthaluru H B,Tade M O,et al. Artificial neural network-based prediction of hydrogen content of coal in pow er station boilers[J]. Fuel, 2005,84 ( 12 - 13) : 1535 - 1542.
  • 4郭建民,刘石,姜凡,李志宏.基于SVM的对冲燃煤锅炉NO_x排放特性[J].燃烧科学与技术,2006,12(3):243-247. 被引量:12
  • 5王春林,周昊,周樟华,凌忠钱,李国能,岑可法.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76. 被引量:98
  • 6Smola, A. and Sch? lkopf, B. A tutorial on support vector re- gression[J]. Statistics and Computing, 2004, 14(4) :199-222.
  • 7Ma, J. S. , Theiler, J. , and Perkins, S. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15:2683-2703.
  • 8Schaffer JD. Multiple objective optimization with vector eval uated genetic algorithms[J]. Proceedings of the 1st Interna- tional Conference on Genetic Algorithms, 1985, 93-100.
  • 9Deb K, Pratap A, Agrawal S, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[J]. IEEE Transactions on Evolu- tionary Computation, 2002, 6(2):182- 197.

二级参考文献23

  • 1占勇,丁屹峰,程浩忠,曾德君.电力系统谐波分析的稳健支持向量机方法研究[J].中国电机工程学报,2004,24(12):43-47. 被引量:60
  • 2张国云,章兢.基于模糊支持向量机的多级二叉树分类器的水轮机调速系统故障诊断[J].中国电机工程学报,2005,25(8):100-104. 被引量:36
  • 3张学工译 Vapnik著.统计学习理论[M].北京:电子工业出版社,2004..
  • 4Keerthi S S,Lin C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation,2003,15(7):1667-1689.
  • 5Lin H T,Lin C J.A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods[EB] .March 2003.http:∥www.csie.ntu.edu.tw/~cjlin/papers.html.
  • 6Maohong Fan,Robert C.Brown.Precision and accuracy of photoacoustic measurements of unburned carbon in fly ash[J].Fuel,2001,80(11): 1545-1554.
  • 7Katarzyna Styszko-Grochowiak,Janusz Golas,Henryk Jankowski et al. Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content[J]. Fuel, 2004,83(13):1847-1853.
  • 8Ouazzane A K,Castagner J L,Jones A R et al.Design of an optical instrument to measure the carbon content of fly ash[J].Fuel, 2002,81(15):1907-1911.
  • 9李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 10Vapnik V N. The Nature of Statistical Learning Theory[ M].New York : Springer, 1995.

共引文献108

同被引文献81

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部