期刊文献+

三维对流反应方程的高精度多重网格方法

High Accuracy Multigrid Solution of the Three-dimensional Convection Reaction Equation
下载PDF
导出
摘要 利用一阶偏导数的四阶紧致差分逼近公式,构造了基于非等距网格上的数值求解三维对流反应方程的一种高精度紧致差分格式.为了提高离散后代数方程组的求解效率,采用多重网格加速技术.数值算例结果验证了本文方法的精确性和可靠性. Making use of the fourth-order compact difference formulas for the first derivative term,a high accuracy compact different scheme with unequal mesh-size is proposed for solving the three-dimentional convection reaction equation.A multigrid accelerating technique is presented to overcome the difficulties of traditional relaxation methods.Numerical results prove its accuracy and dependability.
作者 徐丽 葛永斌
出处 《宁夏师范学院学报》 2011年第3期18-22,29,共6页 Journal of Ningxia Normal University
基金 国家自然科学基金资助项目(10502026) 宁夏自然科学基金资助项目(NZ0937) 宁夏自然科学基金资助项目(NZ10230)
关键词 对流反应方程 高精度 紧致差分格式 非等距 多重网格法 Convection Reaction Equation High Accuracy Compact Difference Scheme Unequal Mesh-size Multigrid
  • 相关文献

参考文献9

  • 1Idelsohn S, Nigro N, Storti M. A Petrov-Galerkin Formulation for Advection-Reaction-Diffusion Problems [ J ]. Comput Appl Meth Eng, 1996,136:27-46.
  • 2Sheu W H T, Shiah H Y. The Two-Dimensional Streamline Upwind Scheme for the Convection-Reaction Equation [ J ]. Int J Numer Meth Fluids,2001,35:575-591.
  • 3Gupta M M,Manohar R P,Stephenson J W. A Single Cell High Order Scheme for the Convection-Diffusion Equation with Variable Coefficients[J]. Int J Numer Methods Fluids,1984,4:641-651.
  • 4Zhang J. Accelerated Muhigrid High Accuracy Solution of the Convection-Diffusion Equation with High Reynolds Number[ J]. Numer Methods Partial Differential Equations, 1997,13 : 77-92.
  • 5Brandt A. Multi-Level Adaptive Solution to Boundary-Value Problems [ J ]. Math Comput, 1977,31 : 333-390.
  • 6Wesseling P W. An Introduction to Muhigrid Methods [ M]. Chichester- Wiley and Sons, 1992.
  • 7哈克布思W.多重网格方法[M].北京:科学出版社,1988..
  • 8马廷福,金涛,葛永斌.三维对流扩散方程的高精度多重网格方法[J].赤峰学院学报(自然科学版),2009,25(12):12-14. 被引量:1
  • 9葛永斌,吴文权,卢曦.基于二维泊松方程六阶紧致格式的多重网格方法[J].上海理工大学学报,2002,24(4):337-340. 被引量:8

二级参考文献19

  • 1田振夫.求解泊松方程的紧致高阶差分方法[J].西北大学学报(自然科学版),1996,26(2):109-114. 被引量:11
  • 2哈克布思W.多重网格方法[M].北京:科学出版社,1988..
  • 3Bickly W C. Finite difference formula for the square lattice[J]. Quart J Meth Appl Math, 1948, 1: 35~42.
  • 4Manohar R, Stephenson J W. Optimal finite analytic methods[J]. J Heat Transter, 1982, 104: 432~437.
  • 5Birkoff G, Lynch R E. Numerical Solution of Elliptic Problems[M]. Philadelphia: SIAM, 1984, 87~89.
  • 6Manohar R, Stephenson J W. High order difference schemes for linear partial differential equation[J]. SIAM J Sci Stat Comput, 1984, 5(1): 69~77.
  • 7Zhang Jun. A cost-effective multigrid projection operator[J]. J Comput Appl Math, 1996, 76: 325~333.
  • 8Zeeuw P M. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver[J]. J Com-put Appl Math, 1990, 33: 1~13.
  • 9Gupta M M, Kouatchou J, Jun Zhang. Comparison of second and four-order discretizations for multigrid Poisson solvers[J]. J Comput Phys, 1997, 132: 226~232.
  • 10Brandt A. Multi-level adaptive solution to boundary -value problems[J]. Math Comput, 1977, 31: 333~390.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部