期刊文献+

完全非线性孤立波的稳态解 被引量:3

Steady Solutions of Fully Nonlinear Solitary Waves
下载PDF
导出
摘要 报道了应用边界积分方法模拟完全非线性孤立波的传播,给出了稳态解的波形、流速场的数值计算结果.结果表明,本模型对计算孤立波的传播是有效的.当a/h>0.3时,自由液面上的水平流速、底部流速和垂向平均流速之间的差别是明显的.三阶Boussinesq方程的孤立波解比低阶方程的孤立波解更接近本文完全非线性的数值解. This paper presents a B1EM based numerical simulation of fully nonlinear solitary wave propagation. The wave profiles and horizontal velocity distributions are provided for steady solitary waves. The results show that the present approach is valid for modeling the propagation of a solitary wave. We found that when α/h > 0.3 , the differences among the horizontal velocity evaluated on the free surface or on the bottom and the depth-averaged horizontal velocity are significant. The third order Boussinesq equations based solitary wave solution coincides with the fully nonlinear numerical results better than the lower order solutions do.
作者 刘桦 吴卫
机构地区 上海交通大学
出处 《海洋通报》 CAS CSCD 北大核心 1999年第6期18-23,共6页 Marine Science Bulletin
基金 上海市科委青年科技启明星计划(98QG14044) 上海市重点学科资助项目
关键词 非线性 孤立波 边界元 稳态解 波浪 Nonlinear wave solitary wave BIEM
  • 相关文献

参考文献6

  • 1刘桦,海洋工程,1999年,1期,93页
  • 2Liu H,China Ocean Eng,1998年,2期
  • 3Teng M H,J Waterways Port Coastal Ocean Eng,1997年,123卷,3期,138页
  • 4Chen Y,JFM,1995年,288卷,351页
  • 5Teng M H,JFM,1992年,266卷,303页
  • 6Wu T Y,J Eng Mech,1981年,107卷,501页

同被引文献31

  • 1刘桦,吴卫,王本龙,杨永荻.完全非线性孤立波的直墙反射[J].海洋工程,2000,18(1):1-6. 被引量:10
  • 2孙大鹏,李玉成.数值水槽内的阻尼消波和波浪变形计算[J].海洋工程,2000,18(2):46-50. 被引量:15
  • 3王本龙,刘桦.一种适用于非均匀地形的高阶Boussinesq水波模型[J].应用数学和力学,2005,26(6):714-722. 被引量:39
  • 4[2]M S Longeut-Higgins, E D Cokelet. The deformation of steep waves on water[A].I. A numerical method of computation. Proc. Roy. Soc. London: 1976, A350,1~26.
  • 5[3]S K Kim, P L F Liu, J A Liggett. Boundary integral equation solutions for solitary wave generation, propagation, and run-up[J]. Coastal Engineering, 1983, 7:299~317.
  • 6[4]S T Grilli, J Skourup, I A Sevendsen. An efficient boundary element method for nonlinear water waves[J]. Engineering Analysis With Boundary Elements, 1989, 6(2): 97~107.
  • 7[5]P L F Liu, H W Hsu, M H Lean. Applications of boundary integral equation methods for two-dimensional non-linear water wave problems[J]. Int. J. for Numer. Methods in Fluids, 1992, 15: 1119~1141.
  • 8[6]P Wang, Y Yao, M P Tulin. An efficient numerical tank for nonlinear water waves based on the multi-subdomain approach with BEM[J]. Int. J. for Numer. Methods in Fluids, 1995, 20: 1315~1336.
  • 9[7]K A Chang. A 2-D boundary integral equation model for water wave generation. propagation and run-up[Z]. M. S. thesis, Cornell University: 1994
  • 10[8]S T Grilli, et al. Breaking criterion and characteristics for solitary waves on slopes[J]. J. of Waterways, Port, Coastal and Ocean Eng. 1997, 123(3):102~140.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部