期刊文献+

基于变换矩阵的三维重建算法研究 被引量:2

Study of 3D Reconstruction Algorithm Based on Inverting Matrix
下载PDF
导出
摘要 先对传统明暗恢复形状(Shape From Shading)算法进行简单分析,然后提出了一种改进的SFS算法。在图像亮度与反射图函数的差值采用雅可比迭代方法的基础上,改进变换矩阵,使其特征值包含三个平方项,减少了矩阵的结果无效的情形,并且提高了迭代的收敛速度。针对光照条件不好的图像,提出了一种先旋转坐标轴,后双向重建的算法。通过旋转坐标轴一定角度,改变光源方向,减少图像失真,然后双向重建的两幅图像通过加权平均法得到物体的三维重建图。最后,用Matlab编制相应程序,在计算机上进行仿真。实验结果表明,改进的SFS算法是有效的,能够克服传统SFS算法精度低的缺陷,提高了三维重建的稳定性和精确度,缩短了三维重建的时间。 First,simply analyses traditional Shape From Shading algorithms,and then propose a modified SFS algorithm.Based on the difference between the image brightness and the reflectance function using jacobi iteration,modify inverting matrix,to make its eigenvalues consist of three squared terms,decrease the case in which the result of matrix is not valid,improve the convergent speed of iteration.For the images of bad light conditions,propose an algorithm which first rotates coordinates and then bi-direction reconstruction.By rotating coordinates a certain angle,change the light direction,decrease the distortion of the images,and then two images of bi-direction reconstruction use the method of weighted average to obtain three-dimensional reconstruction image of the object.Finally,use Matlab compiling corresponding progarms,simulate in the computer.The experiment results show that the modified SFS algorithm is effective,can overcome the disadvantage of low precision in traditional SFS,improve the stability and accuracy of three-dimensional reconstruction,and shortens the time of three-dimensional reconstruction.
作者 马银平 彭如
机构地区 南昌航空大学
出处 《计算机技术与发展》 2011年第8期78-81,共4页 Computer Technology and Development
基金 江西省自然科学基金(2010GZS0178)
关键词 SFS 3D重建 变换矩阵 旋转坐标轴 SFS 3D reconstruction inverting matrix rotating coordinates
  • 相关文献

参考文献10

  • 1Horn B K P. Shape from Shading: A method for Obtaining the Shape of a Smooth. Opaque Object from One View[ D]. Massachusetts Inst. of Technology, 1970.
  • 2胡志勇,张秀芬,蔚刚,梁发周.基于灰度图像的三维曲面重建系统设计[J].计算机技术与发展,2007,17(10):61-64. 被引量:3
  • 3李健,梁琨.基于明暗恢复法的三维重建算法分析[J].微计算机信息,2006(08S):202-204. 被引量:6
  • 4Zheng Q, Chellappa R. Estimation of illuminant direction, al- bedo, and shape from shading [ J ]. IEEE Trans. on PAMI, 1991,13 (7) :680-702.
  • 5Pentland A P. Local shading analysis [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1984,6 : 170-187.
  • 6Lee C H R A. Improved methods of estimating shape from shading using the light source coordinate system [ J ]. Artificial Intelligence, 1985 (26) : 125-143.
  • 7Tsai P S, Shah M. Shape from Shading Using Linear Approxi- mation[J]. Image and Vision Computing J. , 1994,12 (8) : 487 -498.
  • 8廖熠,赵荣椿.从明暗恢复形状(SFS)的几类典型算法分析与评价[J].中国图象图形学报(A辑),2001,6(10):953-961. 被引量:51
  • 9马银平,李建英,宣亮亮.基于粗糙表面模型的三维形貌恢复研究[J].计算机技术与发展,2009,19(7):102-104. 被引量:1
  • 10Ikeda O. A Novel Shape-From-Shading Algorithm Using Jacobi Iterative Method and Bi - Directional Estimation [ C ]// Proe. IASTED CGIM. [ s. 1. ]: [ s. n. ], 2002.

二级参考文献14

  • 1夏庆观,陈桂,盛党红.基于小波变换的多源图像数据融合与边缘检测方法[J].微计算机信息,2005,21(10X):105-106. 被引量:17
  • 2李健,梁琨.基于明暗恢复法的三维重建算法分析[J].微计算机信息,2006(08S):202-204. 被引量:6
  • 3熊琰,龚华军,沈晔青.一种快速有效的彩色图像边缘检测方法[J].计算机技术与发展,2007,17(4):128-130. 被引量:9
  • 4廖熠 赵荣椿.从明暗恢复形状方法综述.中国体视学学会图象分析、中国体视学学会仿真与虚拟现实、中国航空学会信号与信息处理专业第一届联合学术会议论文集[M].山西五台山,2000.310-315.
  • 5Rouy E, Tourin A. A viscosity solutions approach to shape from shading [ J ]. SIAM J. Numerical Analysis, 1992, 29 (3): 867 - 884.
  • 6Oren M, Nayar S K. Generalization of the Lambertian Model and Implications for Machine Vision[ J ]. Int'l. Comp. Vis, 1995,14 (3) : 227 - 251.
  • 7Ragheb H, Hancock E R. Surface Radiance Correction for Shape- from- Shading[ J ]. Computer Vision, Graphics and Image Processing,2004,9 : 12 - 14.
  • 8B.K.P. Horn, "Obtaining Shape from Shading information", in The Psychology of Computer Vision, P.H. Winston Ed. V61.2,1975
  • 9R. T. Frankot and R. Chellappa, "A Method for Enforcing Integrability in Shape from Shading Algorithms", IEEE Trans. On PACII, Vol.10, No.4, 1988
  • 10费广正 芦丽丹 陈立新.可视化OpenGL程序设计[M].北京:清华大学出版社,2001..

共引文献55

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部