期刊文献+

小波混沌神经网络的研究与应用 被引量:4

Research and Application of Wavelet Chaotic Neural Network
下载PDF
导出
摘要 混沌神经网络已被证明是解决组合优化问题的有效工具,但单一化的退火因子无法同时满足准确性和速度性两方面要求,因此改变传统的混沌方式以提高搜索速度和精度就变得尤为重要。文中将Sigmoid函数转化为小波函数可以有效地解决该问题,通过将Sigmoid函数转化为Mexican hat小波函数,以及引入Shannon小波和Sigmoid函数加和组成的非单调激励函数这两种方式,提高了搜索效率和准确度,并用这两种新的模型对两种优化问题进行仿真。仿真结果表明小波混沌神经网络无论在全局最优解的搜索效率还是精确度上都明显优于传统的混沌神经网络。可知将小波函数引入混沌神经网络是极具研究潜力的。 Chaotic neural network has been proved to be a valid tool for solving combinational optimization problems.But the single factor of the annealing cannot meet in the terms of both accuracy and speed requirements.So to change the traditional way to improve the search of chaotic speed and accuracy becomes more important.This Sigmoid function into the wavelet function can solve the problem,through the Sigmoid function into a Mexican hat wavelet function,and the introduction of Shannon wavelet and Sigmoid function and composition of additional non-monotonic activation function of these two methods to improve the efficiency of search and accuracy.And use these two new models to simulate two kinds of optimization problems.Simulation results show that the wavelet chaotic neural network optimal solution in the search speed and accuracy are much better than the conventional chaotic neural network.Show that the introduction of the wavelet function to chaotic neural network is a great potential.
出处 《计算机技术与发展》 2011年第8期93-96,100,共5页 Computer Technology and Development
基金 国家自然科学基金(60736014) 黑龙江省教育科学技术研究项目(11531049)
关键词 小波混沌神经网络 MEXICAN hat小波函数 非单调激励函数 SHANNON小波 wavelet chaotic neural network Mexican hat wavelet function non-monotonous activation function Shannon wavelet
  • 相关文献

参考文献11

  • 1Chen L,Aihara L. Chaotic simulated annealing by a neural network model with transient chaos E J 1. Neural Networks, 1995,8(6) :915-930.
  • 2Aihara K, Takabe T, Toyoda M. Chaotic neural networks [J]. Physics Letters A ,1990, 144(6-7) :333-340.
  • 3Shual J W, Chen Z X, Liu R T. Self-evolution neural model[J]. Physics A,1996,221 (5) :311-316.
  • 4Potapove A, Kali M. Robust chaos in neural networks[J].Physics Letters A,2000,277 ( 6 ) : 310 -322.
  • 5Zhang J, Walter G G, Miao Y B. Wavelet neural networks for function learning [J].IEEE Transactions on Signal Processing, 1995,43 (6) : 1485-1497.
  • 6周婷,贾振红,刘秀玲.一种用于函数优化的小波混沌神经网络[J].计算机应用,2007,27(12):2910-2912. 被引量:2
  • 7Kang B, Li X Y, Lu B C. Improved simulated annealing me- chanics in transiently chaotic neural network [ C]//International Conference on Communications, Circuits and Systems (ICCCAS 2004). [s. l.] :IEEE press ,2004 :1057-1060.
  • 8谢传泉,何晨.混沌神经网络模型中的模拟退火策略[J].上海交通大学学报,2003,37(3):323-326. 被引量:22
  • 9唐运虞,刘向东,修春波.一种新型暂态混沌神经网络及其在函数优化中的应用[J].计算机工程与科学,2006,28(3):116-118. 被引量:2
  • 10徐耀群,孙明,段广仁.暂态混沌神经网络中的激励函数[C]//WCICA2006,大连,2006-06:2906-2911.

二级参考文献20

  • 1唐运虞,刘向东,修春波.一种新型暂态混沌神经网络及其在函数优化中的应用[J].计算机工程与科学,2006,28(3):116-118. 被引量:2
  • 2L Chen,A Kazuyuki.Chaotic Simulated Annealing by a Neural Network Model with Transient Chaos[J].Neural Networks,1995,8(6):915-930.
  • 3Liao X.Hopf Bifurcation and Chaos in a Single Delayed Neuron Equation with Non-monotonic Activation Function[J].Chaos,Solitons and Fractals,2001,12(8):1535-1632.
  • 4H Nozawa.A Neural Network Model as a Globally Coupled Map and Applications Based on Chaos[J].Chaos,1992,2(3):377-396.
  • 5Chen L N, Aihara K. Chaotic simulated annealing by a neural network model with transient chaos[J]. Neural Networks, 1995, 8(6): 915-930.
  • 6Wang B Y, He Z Y, Nie J N. To implement the CDMA multiuser detector by using transsiently chaotic neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 1068- 1071.
  • 7Tokuda I, Aihara K, Nagashima T. Adaptive annealing for chaotic optimization [J]. Physical Review E,1998, 58(4): 5157-5160.
  • 8Aihara K, Takabe T, Toyoda M. Chaotic neural net works[J]. Physical Letters A, 1990, 144 (6): 333-340.
  • 9Hopfield J, Tank D. Neural computation of decisions in optimization problems [J]. Biology Cybernetics,1985, 52: 141-152.
  • 10POTAPOVE A, KALI M. Robust chaos in neural networks [J]. Physics Letters A, 2000, 277(6) : 310 -322.

共引文献23

同被引文献30

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部