期刊文献+

考虑交通流量的SIR-CA病毒传播模型 被引量:1

A SIR-CA Model for Epidemic Propagation Considering Traffic Flow
下载PDF
导出
摘要 基于一维元胞自动机,考虑网络交通流量不均衡的特点,提出新的susceptible-infected-removed(SIR)病毒传播模型,研究病毒在复杂网络中的传播行为。研究表明,对于某些被治愈个体难以获得免疫能力的传染病,随着网络交通流量增大,病毒在网络中传播速度明显加快,并在更短的时间内达到稳定的更高的感染规模。研究还发现,对于某些被感染的个体一旦被治愈就立即获得了永久的免疫能力的传染病,增大网络通信流量可以加速病毒的消亡,提高网络中免疫节点的比例。 Based on the one-dimensional cellular automata and considering the features of the global interaction of information network's nodes and the unbalances of traffic flow,a new susceptible-infected-removed(SIR) model is proposed to study epidemic spreading in complex networks with traffic flow.Simulation results show that the propagation velocity increases obviously and the infection rate will reach a stable and higher scale in a shorter time with the traffic flow becoming large for some infectious diseases harder-to-get immunity ability.Moreover,the probability of virus disappearance is accelerated and the proportion of immune is improved with the traffic flow becoming large for some infectious diseases easier-to-get immunity ability.
出处 《计算机技术与发展》 2011年第8期250-252,F0003,共4页 Computer Technology and Development
基金 国家自然科学基金项目(60874091) 江苏省高校自然基金基础研究计划(08KJD510022) 江苏省'六大人才高峰'高层次人才计划(SJ209006) 南京邮电大学引进人才计划(NY209021) 江苏省普通高校研究生科研创新计划(CX10B_193Z)
关键词 病毒传播 交通流量 元胞自动机 状态转换函数 epidemic spreading communication flow cellular automata transition function
  • 相关文献

参考文献3

二级参考文献39

  • 1许丹,李翔,汪小帆.复杂网络病毒传播的局域控制研究[J].物理学报,2007,56(3):1313-1317. 被引量:63
  • 2[11]Wang Xiaofan, Chen Guanrong. Complex networks: small-world, scale-free, and beyond[J]. IEEE Circuits and Systems Magazine, 2003, 3(2): 6-20.
  • 3[12]Chen Guanrong, Fan Zhengping,Li Xiang. Modelling the complex Internet topology[M]. Complex Dynamics in Communication Networks[M], Springer Publisher, in press, 2004.
  • 4[13]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology[J]. Computer Communication Review, 1999, 29(4): 251-262.
  • 5[14]Li Xiang, Chen Guanrong. A local-world evolving network model[J]. Physica A, 2003, 328(1,2): 274-286.
  • 6[15]Kephart J O, White S R. Directed-graph epidemiological models of computer viruses[A]. Proceedings of the 1991 IEEE Symposium on Security and Privacy[C]. Oakland,California,USA:IEEE Computer Society Press,1991.343-359.
  • 7[16]Kephart J O, White S R. Measuring and modeling computer virus prevalence[A]. Proceedings of the 1993 IEEE Symposium on Security and Privacy[C]. IEEE,1993.2-15.
  • 8[17]Pastor-Satorras R, Vespingnani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001,86(14): 3200-3203.
  • 9[18]Pastor-Satorras R, Vazquez A ,Vespignani A. Dynamical and correlation properties of the Internet[J]. Physical Review Letters, 2001, 87(25): 258701.
  • 10[19]Moreno1 Y, Pastor-Satorras R, Vespignani1 A. Epidemic outbreaks in complex heterogeneous networks[J]. Eur. Phys. J. B, 2002, 26(4): 521-529.

共引文献121

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部