期刊文献+

供水企业最佳收益分析方法

Analysis Method of the Best Benefition of Water Supply Business Based on Business Intelligence
下载PDF
导出
摘要 供水系统是国民生活的重要基础设施,其与网络的结合产生了供水商务智能系统。基于商务智能的基本理论,结合供水实际情况,深入分析了供水系统的业务流程和影响供水的诸多因素,提出了供水点的重要等级、公路优先级以及水管等级的概念,给出了供水企业最佳收益的分析方法。最后,介绍了一个基于商务智能的供水企业最佳收益可视化分析系统及其应用。应用结果表明,所提出的供水企业最佳收益分析方法及研发的可视化分析系统具有合理性和实用性。 Water supply system is the important national life infrastructure.The combination of water supply system with network createsd Water Supply Business Intelligence System.In this paper,based on the basic theory of Business Intelligence and the factual situation of water supply,the operation flow of water supply system and factors affectting water supply were deeply analyzed,the concept of water supply priority and the method of best benefit analysis of water supply enterprise were put forawrd.In the end,a visualization analysis system of best benefit of water supply enterprise developed by the aothor based on the Business Intelligence and its application were introduced.The results of application show that the method of best benefit analysis of water supply enterprise and visualization analysis system are of certain rationality and practicality.
出处 《地理空间信息》 2011年第4期101-105,108,共6页 Geospatial Information
关键词 供水商务智能系统 数据仓库 供水优先级 最佳收益分析 Water Supply Business Intelligence System,data warehouse,water Supply priority,best benefit analysis
  • 相关文献

参考文献17

  • 1陈国清,卫强.商务智能原理与方法[M].北京:电子工业出版社,2009.
  • 2王一松.跟我StepByStep学FLEX教程[OL].http://www.javaeye.com.
  • 3(法)伯纳德.利奥托德,(美)马克.哈蒙德.商务智能[M].北京:电子工业出版社,2005.
  • 4Lawton George. Making Business Intelligence More Useful[J]. IEEE Computer Society, 2007, 39(9): 14-16.
  • 5Hale R. Text Mining: Getting More Value from Literature Resources[J]. Editorial, 2005, 10(6): 377-379.
  • 6Garbver L, Katherine P. Glassey: Business Intelligence is a Smartmove[J]. IT Professiona, 1999, 1(5): 7-80.
  • 7剖析商务智能的四大关键技术[OL].http://ec.zdnet.com.cn/managesofl/2010/0520/1748853.shtml.
  • 8郭宜斌.数据仓库技术的基本概念和发展现状[J].微电脑世界,1996(4):26-31. 被引量:25
  • 9陈旭辉,刘东坡,徐勇.基于OLAM的制造业商务智能模型[J].兰州理工大学学报,2009,35(2):93-97. 被引量:2
  • 10宋远芳.基于本体的数据挖掘技术在商务智能中的应用[J].计算机技术与发展,2009,19(1):184-186. 被引量:10

二级参考文献40

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部