期刊文献+

一类非线性差分方程组解的动力学行为 被引量:1

The Dynamics Behavior of Solution to a System of Two Nonlinear Difference Equations
下载PDF
导出
摘要 研究了一类非线性差分方程组xn=A+xn-1xn-pyn-q,yn=A+yn-1xn-ryn-s n=1,2,…解的动力学性质,包括有界性和解的全局渐近收敛性,其中:{xn},{yn}为正实数数列;p,q,r,s均为正整数,A≥0;初始解x1-max{p,r},x2-max{p,r},…,x0>0,初始解y1-max{q,s},y2-max{q,s},…,y0>0. In this paper,the authors investigate the boundedness and the global asymptotic convergence of solution to a system of two nonlinear difference equations xn=A+xn-1xn-pyn-q,yn=A+yn-1xn-ryn-s n=1,2,…with positive initial conditions where p,q,r,s are distinct nonnegative integers,A≥0.
作者 杨懿 邬毅
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期68-72,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 重庆市自然科学基金资助项目(CSTC2009BB2179)
关键词 差分方程 平衡点 全局渐近收敛性 difference equation equilibrium point global asymptotic convergence
  • 相关文献

参考文献10

  • 1LIU S Q, CHEN L S, LIU Z. Extinction and Permanence in Nonautonomous Competitive System with Stage Structure [J]. J Math Anal Appl, 2002, 274(2): 667-684.
  • 2WAALER H, ANTON G. The Use of Mathematical Models in the Study of the Epidemiology of Tuberculosis [J]. A J P H, 1962, 52(6): 1002-1013.
  • 3CASTILLO C C, SONG B J. Dynamical Models of Tuberculosis and Their Applications [J]. Math Bios Engin, 2004, 1(2): 361-404.
  • 4ZHOU Y C, KAMRAN K, LAN F Z, et al. Projection of Tuberculosis Incidence with Increasing Immigration Trends [J]. Journal of Theoretical Biology, 2008, 254(2): 215-228.
  • 5PAPASCHINOPOULOS G, SCHINAS C J. On a System of Two Nonlinear Difference Equations [J]. Journal of Mathe- matical Analysis and Applications, 1998, 219(2): 415-426.
  • 6PAPASCHINOPOULOS G, PAPADOULOS B K. On the Fuzzy Difference Equation xn+1 =A+xn/xn-m[J]. Fuzzy Sets and Systems, 2002, 129(1): 73-81.
  • 7YANG X. On the System of Rational Difference Equations xn =A+yn-1/xn-pyn-q, yn=A+xn-1/xn-r yn-s[J]. Journal of Mathematical Analysis and Applications, 2005, 307(1): 305-311.
  • 8ZHANG Yu, YANG Xiao-fan. On the System of Rational Difference Equations xn = A+1/ yn-p, yn = A+yn-1/xn-r yn-s[J]. Applied Mathematics and Computation, 2006, 176(2) : 403-408.
  • 9张千宏,徐昌进.一个非线性差分方程组解的表现[J].西南师范大学学报(自然科学版),2010,35(4):55-58. 被引量:5
  • 10YANG Y, YANG X. On the Difference Equation xn+1 = (pxn-s + xn-t) / (qxn-s + xn-t) [J]. Applied Mathematics and Computation, 2008, 203(2): 903-907.

二级参考文献14

  • 1谢茂森.非线性时滞差分方程的全局吸引性[J].西南师范大学学报(自然科学版),2005,30(2):210-214. 被引量:4
  • 2Koeie V L, Ladas G, Rodrigues I W. On Rational Resursive Sequences [J]. J Math Anal Appl, 1993, 173:127 - 157.
  • 3He Wan-Sheng, Li Wan-Tong, Yan Xin-Xue. Global Attractivity of the Difference Equation xn-1=a+xa-k/xa[J].Appl Math Comput, 2004, 151 : 879 - 885.
  • 4DeVault R, Ladas G, Schultz S W. Necessary and Sufficient Conditions the Boundedness of xn+1=A/xn^p+B/xn-1^q[J].J Difference Equations Appl, 1998, 3 : 259 - 266.
  • 5Abu-Saris R M, DeVault R. Global Stability of[J]. ApplMathLett, 2003, 16: 173-178.
  • 6Agarwal R P, Li W T, Pang H. Asymptotic Behavior of a Class of Nolinear Delay Difference Equations [J]. J Differ Equat Appl, 2002, 8: 719-728.
  • 7Papaschinopoulos G, Schinas C J. On a System of Two Nonlinear Difference Equations [J]. J Math Anal Appl, 1998, 219: 415-426.
  • 8Papaschinopoulos G, Schinas J. Permanence and Oscillation of a System of Two Nonlinear Difference equations [J]. J Difference Equations Appl, 1997, 3:185 - 196.
  • 9Kocic V L, Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Application[M]. London: Kluwer Academic Publishers, 1993.
  • 10Kulenonvic M R S, Ladas G. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures [M]. Florida: Chapman & Hall/CRC, 2002.

共引文献4

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部