期刊文献+

基于空穴理论的复杂网络传染病传播控制 被引量:3

Epidemic Spread and Control on Complex Networks Using Cavity Theory
下载PDF
导出
摘要 针对传染病的传播与控制问题,应用复杂网络进行建模,模型支持非指数形式的传播和康复概率函数,具有准确的预测精度,控制措施考虑边移除和节点移除对传染病发展的影响,控制参数可自由调节。文中利用空穴理论对模型进行了数学解析,得到了可以进行数值计算的解析结果,仿真实验证实了解析结果的准确性。对控制措施的实验表明加强重点人群防控对防治传染病具有重要意义。 The epidemic spread and control problem is studied,and a model with exact predicting precision is presented based on complex networks,in which the non-exponential spread and recover function is considered.The influence of removing edges and nodes from the network is considered in the control strategy,and the control parameters can be adjusted freely.Mathematical analysis for the model is presented through utilizing cavity theory.The analytical results are confirmed by simulation experiments.The experiments on control strategy show that it is very important for the control of epidemic for people with more social contacts.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第4期491-496,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60904065)
关键词 复杂网络 传染病 免疫 传播 complex networks epidemic immune spread
  • 相关文献

参考文献17

  • 1BARRAT A, BARTHELEMY M, VESPIGNANI A. Dynamic processes on complex networks[M]. Cambridge: Cambridge University Press, 2008:180-215.
  • 2JACKSON M O. Social and economic networks[M]. Princeton: Princeton University Press, 2008: 239-267.
  • 3DALEY D J, GANI J. Epidemic modelling: an introduction[M]. Cambridge: Cambridge University Press, 2001.
  • 4王亚奇,蒋国平.复杂网络中考虑不完全免疫的病毒传播研究[J].物理学报,2010,59(10):6734-6743. 被引量:19
  • 5ALBERT R, BARABASI A L, Statistical mechanics of complex networks[J]. Rev Mod Phys, 2002, 74(1): 47-97.
  • 6PARK J, NEWMAN M E J. Statistical mechanics of networks[J]. Phys Rev E, 2004, 70: 066117.
  • 7PASTOR-SATORRAS R, VESPIGNAN1 A. Epidemic spreading in scale-free networks[J]. Phys Rev Lett, 2001, 86(14): 3200.
  • 8NEWMAN M E J. Spread of epidemic disease on networks[J]. Phys Rev E, 2002, 66: 016128.
  • 9VOLZ E. SIR dynamics in random networks with heterogeneous connectivity[J]. Journal of Mathematical Biology, 2008, 56(3): 293-310.
  • 10YANG R, WANG B H, REN J, et al. Epidemic spreading on heterogeneous networks with identical infectivity[J]. Phys Lett A, 2007, 364: 189-193.

二级参考文献60

  • 1Kephart J O, White S R, Chess D M.Computers and epidemiology.IEEE Spectr,1993,30:20-26.
  • 2Bogufld M, Pastor-Satorras R. Epidemic spreading in correlated complex networks. Phys RevE, 2002,66:047104.
  • 3Bogufld M, Pastor-Satorras R, Vespignani A.Absence of epidemic threshold in scale-free networks with connectivity correlations. Phys Rev Lett, 2003, 90:028701.
  • 4Moreno Y, G6mez J B, Pacheco A F. Epidemic incidence in correlated complex networks. Phys Rev E, 2003, 68:035103.
  • 5May R M, Lloyd A L. Infection dynamics on scale-free networks. Phys Rev E, 2001, 64:066112.
  • 6Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks. Phys Rev E, 2002, 65:035108.
  • 7Barthfilemy M, Barrat A,Pastor-Satorras R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks.Phvs Rev Lett, 2004, 92,178701.
  • 8Yan G, Zhou T, Wang J, et al. Epidemic spread in weighted scale-free networks, arXiv: cond-mat /0408049.
  • 9Callway D S, Newman M E J, Strogatz S H, el al. Network robustness and fragility: Percolation on random graphs. Phys Rev Lett, 2000, 85:5468-5471.
  • 10Cohen R, Havlin S,ben-Avraham D. Efficient immunization of populations and computers. Phys Rev Lett,2003, 91:247901.

共引文献88

同被引文献22

  • 1Watts D J, Muhamad R, Medina D C, et al. Muhiscale, resurgentepidemics in a hierarchical metapopulation model. Proceedings of the National Academy of Sciences of the United States of America, 2005 ; 102(32) : 11157-11162.
  • 2Ferguson N M, Keeling M J, Edmunds W J, et al. Planning for smallpox outbreaks. Nature, 2003 ; 425 (6959) : 681-685.
  • 3Simoes J M. An Agent-Based Approach to Spatial Epidemics through GIS. University College London Ph. D Thesis, 2006.
  • 4James A, Pitchford J W, Plank M J. An event-based model of super- spreading in epidemics. Proceedings of the Royal Society B : Biologi- cal. Sciences, 2007; 274( 1610): 741-747.
  • 5Helbing D, Farkas I, Vicsek T. Simulating dynamical features of es- cape panic. Nature, 2000; 407(6803): 487-490.
  • 62010年民航国内旅客市场特征研究报告.北京:中国民航管理干部学院民航运输市场研究所,2010.
  • 7D. Clay Whybark.Issues in managing disaster relief inventories[J].International Journal of Production Economics.2007(1)
  • 8常锐.群体性事件的网络舆情及其治理模式与机制研究[D].吉林大学.2012
  • 9Shangyao Yan,Yu-Lin Shih.Optimal scheduling of emergency roadway repair and subsequent relief distribution[J].Computers and Operations Research.2008(6)
  • 10Wei Yi,Arun Kumar.Ant colony optimization for disaster relief operations[J].Transportation Research Part E.2007(6)

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部